Univalence of harmonic functions, problem of Ponnusamy and Sairam, and constructions of univalent polynomials
Problemy analiza, Tome 3 (2014) no. 2, pp. 59-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

The criteria of the univalence of a harmonic mapping is obtained in this paper. Particularly, it permits to formulate the hypothesis of the harmonic function classes equality $S_H^0=S_H^0(S)$ (hypothesis of Ponnusamy and Sairam), in analytic form. The method of construction of the univalent harmonic polynomials with desired properties, according to a given harmonic function, is obtained by means of the univalence criteria.
Keywords: harmonic functions, criteria of the univalence, harmonic univalent polynomials.
@article{PA_2014_3_2_a4,
     author = {V. V. Starkov},
     title = {Univalence of harmonic functions, problem of {Ponnusamy} and {Sairam,} and constructions of univalent polynomials},
     journal = {Problemy analiza},
     pages = {59--73},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2014_3_2_a4/}
}
TY  - JOUR
AU  - V. V. Starkov
TI  - Univalence of harmonic functions, problem of Ponnusamy and Sairam, and constructions of univalent polynomials
JO  - Problemy analiza
PY  - 2014
SP  - 59
EP  - 73
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2014_3_2_a4/
LA  - en
ID  - PA_2014_3_2_a4
ER  - 
%0 Journal Article
%A V. V. Starkov
%T Univalence of harmonic functions, problem of Ponnusamy and Sairam, and constructions of univalent polynomials
%J Problemy analiza
%D 2014
%P 59-73
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2014_3_2_a4/
%G en
%F PA_2014_3_2_a4
V. V. Starkov. Univalence of harmonic functions, problem of Ponnusamy and Sairam, and constructions of univalent polynomials. Problemy analiza, Tome 3 (2014) no. 2, pp. 59-73. http://geodesic.mathdoc.fr/item/PA_2014_3_2_a4/

[1] Bieberbach L., “Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Eincheitskreises vermitteln”, S. B. Preuss. Acad. Wiss., 138 (1916), 940–955

[2] de Branges L. A., “Proof of the Bieberbach conjecture”, Acta Math., 154 (1985), 137–152 | DOI | MR | Zbl

[3] Duren P., Harmonic mappings in the plane, Cambridge, 2004, 214 pp. | MR

[4] Clunie J., Sheil-Small T., “Harmonic univalent functions”, Ann. Acad. Sci. Fenn., A.1. Math, 9 (1984), 3–25 | DOI | MR | Zbl

[5] Ponnusamy S., Sairam Kaliraj A., “On the coefficient conjecture of Clunie and Sheil-Small on univalent harmonic mappings”, Proc. Indian Acad. Sci., 2014 (to appear)

[6] Bazilevich I. E., “The problem of coefficients of univalent functions”, Math. J. of the Aviation Institute. [Moscow], 1945, 29–47 (in Russian)

[7] Bharanedhar S. V., Ponnusamy S., “Coefficient conditions for harmonic univalent mappings and hypergeometric mappings”, Rocky Mountain J. Math., 44:3 (2014), 753–777 | DOI | MR | Zbl

[8] Ponnusamy S., Rasila A., “Planar harmonic and quasiregular mappings”, CMFT, RMS-Lecture Notes Series, 19, 2013, 267–333 | MR

[9] Sheil-Small T., “Constants for planar harmonic mappings”, J. London Math. Soc., 42 (1990), 237–248 | DOI | MR | Zbl