On the stabilization of the linear hybrid system structure
Problemy analiza, Tome 3 (2014) no. 2, pp. 52-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

The linear control hybrid system, consisting of a finite set of subsystems (modes) having different dimensions, is considered. The moments of reset time are determined by some complementary function – evolutionary time. This function satisfies the special complementary ordinary differential equation. The mode stabilization problem is solved for some class of piecewise linear controls. The method of stabilization relies on the set of invariant planes, the existence of which is due to the special form of the hybrid system.
Keywords: stabilization, hybrid system.
Mots-clés : variable structure
@article{PA_2014_3_2_a3,
     author = {A. N. Kirillov},
     title = {On the stabilization of the  linear hybrid system structure},
     journal = {Problemy analiza},
     pages = {52--58},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2014_3_2_a3/}
}
TY  - JOUR
AU  - A. N. Kirillov
TI  - On the stabilization of the  linear hybrid system structure
JO  - Problemy analiza
PY  - 2014
SP  - 52
EP  - 58
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2014_3_2_a3/
LA  - en
ID  - PA_2014_3_2_a3
ER  - 
%0 Journal Article
%A A. N. Kirillov
%T On the stabilization of the  linear hybrid system structure
%J Problemy analiza
%D 2014
%P 52-58
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2014_3_2_a3/
%G en
%F PA_2014_3_2_a3
A. N. Kirillov. On the stabilization of the  linear hybrid system structure. Problemy analiza, Tome 3 (2014) no. 2, pp. 52-58. http://geodesic.mathdoc.fr/item/PA_2014_3_2_a3/

[1] Arjan van der Schaft, Hans Schumacher, An Introduction to hybrid dynamical systems, Springer, London, 2000, 174 pp. | MR

[2] Handbook of hybrid systems control Theory, tools, applications, ed. J. Lunze, Cambridge University Press., 2009, 565 pp. | MR

[3] Roger W. Brockett, “Hybrid models for motion control systems”, Essays in Control: Perspectives in the Theory and its Applications, eds. H. L. Trentelman and J. C. Willems, Birkhäuser, Boston, 1993, 29–53 | MR

[4] Kirillov A. N., “The systems with variable fhase space in modeling of biological wastewater treatment processes”, The Russian conference “Mathematical problems of ecology”, The conference abstracts, Dushanbe, 1991, 44 | Zbl

[5] Kirillov A. N., “The control of multistage technological processes”, Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 4 (2006), 127–131

[6] Galakhova M. E., Kirillov A. N., “The linear variable structure system control”, Proceedings of the Karelian Research Centre of the RAS. No. 5. Mathematical modeling and information technologies, 3 (2012), 18–21

[7] Smirnov E. Y., The stabilization of programmed movements, SPbSU, Saint-Petersburg, 1997, 308 pp.

[8] Kirillov A. N., “The method of dynamical decomposition in modeling of variable structure systems”, Information and Control Systems, 2009, no. 1