Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2014_3_2_a2, author = {B. F. Ivanov}, title = {Analog of an inequality of {Bohr} for integrals of~functions from~$L^{p}(R^{n})${.~II}}, journal = {Problemy analiza}, pages = {32--51}, publisher = {mathdoc}, volume = {3}, number = {2}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2014_3_2_a2/} }
B. F. Ivanov. Analog of an inequality of Bohr for integrals of~functions from~$L^{p}(R^{n})$.~II. Problemy analiza, Tome 3 (2014) no. 2, pp. 32-51. http://geodesic.mathdoc.fr/item/PA_2014_3_2_a2/
[1] Ivanov B. F., “Analog of an inequality of Bohr for integrals of functions from $L^p(R^n)$”, The Issues of Analysis, 3 (21):2 (2014), 16–34 | DOI | MR
[2] Bohr H., “Un théoréme général sur l'intégration d'un polynome trigonométrigue”, Comptes Rendus De L'Academie des sciences, 200:15 (1935), 1276–1277
[3] Ivanov B. F., “On a generalization of an inequality of Bohr”, The Issues of Analysis, 2 (20):2 (2013), 21–57 | DOI | MR | Zbl
[4] Gelfand I. M., Shilov G. E., The generalized functions and the operations over them, iss. 1, PhM, M., 1959, 470 pp.
[5] Vladimirov V. S., Generalized functions in mathematical physics, Nauka, M., 1979, 318 pp. | MR