Plane domains with special cone condition
Problemy analiza, Tome 3 (2014) no. 2, pp. 16-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers the domains with cone condition in $\mathbb{C}$. We say that domain G satisfies the (weak) cone condition, if $p+V(e(p),H)\subset{G}$ for all $p\in{G}$, where $V(e(p),H)$ denotes right-angled circular cone with vertex at the origin, a fixed solution $\varepsilon$ and a height $H$, $0{H}\leq\infty$, and depending on the $p$ vector $e(p)$ axis direction. Domains satisfying cone condition play an important role in various branches of mathematic (e. g. [1], [2], [3] (p. 1076), [4]). In the paper of P. Liczberski and V. V. Starkov, $\alpha$–accessible domains were considered, $\alpha\in[0,1)$, — the domains, accessible at every boundary point by the cone with symmetry axis on $\{pt:t>1\}$. Unlike the paper of P. Liczberski and V. V. Starkov, here we consider domains, accessible outside by the cone, which symmetry axis inclined on fixed angle $\phi$ to the $\{pt: t>1\}$, $0\|\phi\|\pi/2$. In this paper we give criteria for this class of domains when the boundaries of domains are smooth, and also give a sufficient condition when boundary is arbitrary. This article is the full variant of [5], published without proofs.
Keywords: cone condition.
Mots-clés : $(\alpha,\beta)$–accessible domain
@article{PA_2014_3_2_a1,
     author = {A. N. Anikiev},
     title = {Plane domains with special cone condition},
     journal = {Problemy analiza},
     pages = {16--31},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2014_3_2_a1/}
}
TY  - JOUR
AU  - A. N. Anikiev
TI  - Plane domains with special cone condition
JO  - Problemy analiza
PY  - 2014
SP  - 16
EP  - 31
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2014_3_2_a1/
LA  - en
ID  - PA_2014_3_2_a1
ER  - 
%0 Journal Article
%A A. N. Anikiev
%T Plane domains with special cone condition
%J Problemy analiza
%D 2014
%P 16-31
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2014_3_2_a1/
%G en
%F PA_2014_3_2_a1
A. N. Anikiev. Plane domains with special cone condition. Problemy analiza, Tome 3 (2014) no. 2, pp. 16-31. http://geodesic.mathdoc.fr/item/PA_2014_3_2_a1/

[1] Besov O. V., Il'in V. P., Nikolskii S. M., Integral presentation of functions and theorem of embanding, Nauka, M., 1975 | Zbl

[2] Dolzenko E. P., “Boundary properties of arbitrary functions”, Proc. of USSR. Ac. of Sci. Ser. Math., 31:1 (1967), 3–14 (In Russian) | DOI | MR

[3] Math. encyclopedia, v. 2, Moscow, 1979

[4] Zaremba S., “Sur le principe de Dirichlet”, Acta Math., 34 (1911), 293–316 | DOI | MR | Zbl

[5] Anikiev A. N., “Plane domains with special cone condition”, Russian Mathematics, 58:2 (2014), 62–63 | DOI | Zbl

[6] Liczberski P., Starkov V. V., “Domains in $\mathbb{R}^n$ with conical accessible boundary”, J. Math. Anal. Appl., 408:2 (2013), 547–560 | DOI | MR

[7] Liczberski P., Starkov V. V., “Planar $\alpha$–angularly starlike domains, $\alpha$–angularly starlike functions and their generalizations to multi-dimensional case”, International Conference “60 Years of analytic functions in Lublin”, 2012, 117–125 | MR | Zbl