Mots-clés : $(\alpha,\beta)$–accessible domain
@article{PA_2014_3_2_a1,
author = {A. N. Anikiev},
title = {Plane domains with special cone condition},
journal = {Problemy analiza},
pages = {16--31},
year = {2014},
volume = {3},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PA_2014_3_2_a1/}
}
A. N. Anikiev. Plane domains with special cone condition. Problemy analiza, Tome 3 (2014) no. 2, pp. 16-31. http://geodesic.mathdoc.fr/item/PA_2014_3_2_a1/
[1] Besov O. V., Il'in V. P., Nikolskii S. M., Integral presentation of functions and theorem of embanding, Nauka, M., 1975 | Zbl
[2] Dolzenko E. P., “Boundary properties of arbitrary functions”, Proc. of USSR. Ac. of Sci. Ser. Math., 31:1 (1967), 3–14 (In Russian) | DOI | MR
[3] Math. encyclopedia, v. 2, Moscow, 1979
[4] Zaremba S., “Sur le principe de Dirichlet”, Acta Math., 34 (1911), 293–316 | DOI | MR | Zbl
[5] Anikiev A. N., “Plane domains with special cone condition”, Russian Mathematics, 58:2 (2014), 62–63 | DOI | Zbl
[6] Liczberski P., Starkov V. V., “Domains in $\mathbb{R}^n$ with conical accessible boundary”, J. Math. Anal. Appl., 408:2 (2013), 547–560 | DOI | MR
[7] Liczberski P., Starkov V. V., “Planar $\alpha$–angularly starlike domains, $\alpha$–angularly starlike functions and their generalizations to multi-dimensional case”, International Conference “60 Years of analytic functions in Lublin”, 2012, 117–125 | MR | Zbl