About planar $(\alpha,\beta)$--accessible domains
Problemy analiza, Tome 3 (2014) no. 2, pp. 3-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to the class $A^{\alpha,\beta}_{\rho}$ of all $(\alpha,\beta)$–accessible with respect to the origin domains $D,$ $\alpha,\beta\in[0,1),$ possessing the property\thinspace $\rho=\min\limits_{p\in\partial D}|p|,$\thinspace where\thinspace $\rho\thinspace\in \thinspace(0,+\infty)$ is a fixed number. We find the maximal set of points $a$ such that all domains $D\in A^{\alpha,\beta}_{\rho}$ are $(\gamma,\delta)$–accessible with respect to $a,$ $\gamma\in[0;\alpha],$ $\delta\in[0;\beta]$. This set is proved to be the closed disc of center $0$ and radius $\rho\sin\displaystyle\frac{\varphi\pi}{2},$ where $\varphi=\min\left\{\alpha-\gamma,\beta-\delta\right\}$.
Keywords: cone condition.
Mots-clés : $\alpha$–accessible domain, $(\alpha,\beta)$–accessible domain
@article{PA_2014_3_2_a0,
     author = {K. F. Amozova and E. G. Ganenkova},
     title = {About planar $(\alpha,\beta)$--accessible domains},
     journal = {Problemy analiza},
     pages = {3--15},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2014_3_2_a0/}
}
TY  - JOUR
AU  - K. F. Amozova
AU  - E. G. Ganenkova
TI  - About planar $(\alpha,\beta)$--accessible domains
JO  - Problemy analiza
PY  - 2014
SP  - 3
EP  - 15
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2014_3_2_a0/
LA  - en
ID  - PA_2014_3_2_a0
ER  - 
%0 Journal Article
%A K. F. Amozova
%A E. G. Ganenkova
%T About planar $(\alpha,\beta)$--accessible domains
%J Problemy analiza
%D 2014
%P 3-15
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2014_3_2_a0/
%G en
%F PA_2014_3_2_a0
K. F. Amozova; E. G. Ganenkova. About planar $(\alpha,\beta)$--accessible domains. Problemy analiza, Tome 3 (2014) no. 2, pp. 3-15. http://geodesic.mathdoc.fr/item/PA_2014_3_2_a0/

[1] Liczberski P., Starkov V. V., “Domains in $\mathbb{R}^n$ with conical accessible boundary”, J. Math. Anal. Appl., 408:2 (2013), 547–560 | DOI | MR

[2] Stankiewicz J., “Quelques problèmes extrémaux dans les classes des fonctions $\alpha$–angulairement étoilées”, Ann. Univ. Mariae Curie-Sklodowska, Sectio A, XX (1966), 59–75 | MR

[3] Stankiewicz J., “Some remarks concerning starlike functions”, Bulletin de l'académie Polonaise des sciences. Série des sciences math., astr. et phys., XVIII:3 (1970), 143–146 | MR | Zbl

[4] Stankiewicz J., “On a family of starlike functions”, Ann. Univ. Mariae Curie-Sklodowska, Sectio A, XXII/XXIII/XXIV (1968/1969/1970,), 175–181 | MR

[5] Brannan D. A. and Kirwan W. E., “On some classes of bounded univalent functions”, J. London Math. Soc., 2:1 (1969), 431–443 | DOI | MR

[6] Ma W. and Minda D., “An internal geometric characterization of strongly starlike functions”, Ann. Univ. Mariae Curie-Sklodowska, Sectio A, XLV (1991), 89–97 | MR | Zbl

[7] Sugawa T., “A self-duality of strong starlikeness”, Kodai Math. J., 28 (2005), 382–389 | DOI | MR | Zbl

[8] Lecko A. and Stankiewicz J., “An internal geometric characterization of some subclasses of starlike functions”, XVIth Rolf Nevanlinna Colloquium, Joensuu, 1995, eds. I. Laine and O. Martio, Walter de Gruyter, Berlin, 1997, 231–238 | MR

[9] Anikiev A. N., “Plane domains with special cone condition”, Russian Mathematics, 58:2 (2014), 62–63 | DOI | Zbl

[10] Anikiev A. N., “Plane domains with special cone condition”, Issues of Analysis, 3 (21):1 (2014) | DOI

[11] Amozova K. F., Starkov V. V., “$\alpha$–accessible domains, a nonsmooth case”, Izv. Sarat. Univ. N. S. Ser. Math. Mech. Inform., 13:3 (2013), 3–8 | MR | Zbl

[12] Amozova K. F., “Sufficient conditions of $\alpha$–accessibility of domain in nonsmooth case”, 2 (20), no. Issues of Analysis, 2013, 3–13 | MR | Zbl