Optimal bounds for certain bivariate means
Problemy analiza, Tome 3 (2014) no. 1, pp. 35-43

Voir la notice de l'article provenant de la source Math-Net.Ru

New bivariate means, introduced and investigated in [1], play a central role in this work. The lower and upper bounds for those means are obtained. Bounding quantities are the one-parameter means derived from the harmonic and contraharmonic means by forming convex combinations of the variables of these two means.
Keywords: Bivariate means, one-parameter means, optimal bounds, inequalities.
@article{PA_2014_3_1_a2,
     author = {E. Neuman},
     title = {Optimal bounds for certain bivariate means},
     journal = {Problemy analiza},
     pages = {35--43},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2014_3_1_a2/}
}
TY  - JOUR
AU  - E. Neuman
TI  - Optimal bounds for certain bivariate means
JO  - Problemy analiza
PY  - 2014
SP  - 35
EP  - 43
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2014_3_1_a2/
LA  - en
ID  - PA_2014_3_1_a2
ER  - 
%0 Journal Article
%A E. Neuman
%T Optimal bounds for certain bivariate means
%J Problemy analiza
%D 2014
%P 35-43
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2014_3_1_a2/
%G en
%F PA_2014_3_1_a2
E. Neuman. Optimal bounds for certain bivariate means. Problemy analiza, Tome 3 (2014) no. 1, pp. 35-43. http://geodesic.mathdoc.fr/item/PA_2014_3_1_a2/