Optimal bounds for certain bivariate means
Problemy analiza, Tome 3 (2014) no. 1, pp. 35-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

New bivariate means, introduced and investigated in [1], play a central role in this work. The lower and upper bounds for those means are obtained. Bounding quantities are the one-parameter means derived from the harmonic and contraharmonic means by forming convex combinations of the variables of these two means.
Keywords: Bivariate means, one-parameter means, optimal bounds, inequalities.
@article{PA_2014_3_1_a2,
     author = {E. Neuman},
     title = {Optimal bounds for certain bivariate means},
     journal = {Problemy analiza},
     pages = {35--43},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2014_3_1_a2/}
}
TY  - JOUR
AU  - E. Neuman
TI  - Optimal bounds for certain bivariate means
JO  - Problemy analiza
PY  - 2014
SP  - 35
EP  - 43
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2014_3_1_a2/
LA  - en
ID  - PA_2014_3_1_a2
ER  - 
%0 Journal Article
%A E. Neuman
%T Optimal bounds for certain bivariate means
%J Problemy analiza
%D 2014
%P 35-43
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2014_3_1_a2/
%G en
%F PA_2014_3_1_a2
E. Neuman. Optimal bounds for certain bivariate means. Problemy analiza, Tome 3 (2014) no. 1, pp. 35-43. http://geodesic.mathdoc.fr/item/PA_2014_3_1_a2/

[1] Neuman E., “On a new bivariate mean”, Aequationes Math. (to appear) | MR

[2] He Z.-Y., Chu Y.-M., Wang M.-K., “Optimal bounds for Neuman means in terms of harmonic and contraharmonic means”, J. Appl. Math. (to appear) | MR

[3] Neuman E., “A one-parameter family of bivariate means”, J. Math. Inequal., 7:3 (2013), 399–412 | DOI | MR | Zbl

[4] Neuman E., “Sharp inequalities involving Neuman-Sándor and logarithmic means”, J. Math. Inequal., 7:3 (2013), 413–419 | DOI | MR | Zbl

[5] Neuman E., “On generalized Seiffert means”, Aequationes Math., 87:3 (2014), 325–335 | DOI | MR | Zbl

[6] Neuman E., “On some means derived from the Schwab-Borchrdt mean”, J. Math. Inequal., 8:1 (2014), 171–183 | DOI | MR | Zbl

[7] Neuman E., “Inequalities involving certain bivariate means II”, J. Inequal. Spec. Funct., 4:4 (2013), 12–20 | MR

[8] Neuman E., “Inequalities involving certain bivariate means”, Bull. Internat. Math. Virtual Inst., 3 (2013), 49–57 | MR

[9] Borwein J. M., Borwein P. B., Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity, John Wiley and Sons, 1987 | MR | Zbl

[10] Carlson B. C., “Algorithms involving arithmetic and geometric means”, Amer. Math. Monthly, 78 (1971), 496–505 | DOI | MR | Zbl

[11] Neuman E., Sándor J., “On the Schwab–Borchardt mean”, Math. Pannon., 14:2 (2003), 253–266 | MR | Zbl

[12] Neuman E., Sándor J., “On the Schwab–Borchardt mean II”, Math. Pannon., 17:1 (2006), 49–59 | MR | Zbl

[13] Neuman E., “Inequalities for the Schwab–Borchardt mean and their applications”, J. Math. Inequal., 5 (2011), 601–609 | DOI | MR | Zbl

[14] Alzer H., Qiu S.-L., “Monotonicity theorems and inequalities for complete elliptic integrals”, J. Comput. Appl. Math., 172 (2004), 289–312 | DOI | MR | Zbl