Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2014_3_1_a2, author = {E. Neuman}, title = {Optimal bounds for certain bivariate means}, journal = {Problemy analiza}, pages = {35--43}, publisher = {mathdoc}, volume = {3}, number = {1}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2014_3_1_a2/} }
E. Neuman. Optimal bounds for certain bivariate means. Problemy analiza, Tome 3 (2014) no. 1, pp. 35-43. http://geodesic.mathdoc.fr/item/PA_2014_3_1_a2/
[1] Neuman E., “On a new bivariate mean”, Aequationes Math. (to appear) | MR
[2] He Z.-Y., Chu Y.-M., Wang M.-K., “Optimal bounds for Neuman means in terms of harmonic and contraharmonic means”, J. Appl. Math. (to appear) | MR
[3] Neuman E., “A one-parameter family of bivariate means”, J. Math. Inequal., 7:3 (2013), 399–412 | DOI | MR | Zbl
[4] Neuman E., “Sharp inequalities involving Neuman-Sándor and logarithmic means”, J. Math. Inequal., 7:3 (2013), 413–419 | DOI | MR | Zbl
[5] Neuman E., “On generalized Seiffert means”, Aequationes Math., 87:3 (2014), 325–335 | DOI | MR | Zbl
[6] Neuman E., “On some means derived from the Schwab-Borchrdt mean”, J. Math. Inequal., 8:1 (2014), 171–183 | DOI | MR | Zbl
[7] Neuman E., “Inequalities involving certain bivariate means II”, J. Inequal. Spec. Funct., 4:4 (2013), 12–20 | MR
[8] Neuman E., “Inequalities involving certain bivariate means”, Bull. Internat. Math. Virtual Inst., 3 (2013), 49–57 | MR
[9] Borwein J. M., Borwein P. B., Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity, John Wiley and Sons, 1987 | MR | Zbl
[10] Carlson B. C., “Algorithms involving arithmetic and geometric means”, Amer. Math. Monthly, 78 (1971), 496–505 | DOI | MR | Zbl
[11] Neuman E., Sándor J., “On the Schwab–Borchardt mean”, Math. Pannon., 14:2 (2003), 253–266 | MR | Zbl
[12] Neuman E., Sándor J., “On the Schwab–Borchardt mean II”, Math. Pannon., 17:1 (2006), 49–59 | MR | Zbl
[13] Neuman E., “Inequalities for the Schwab–Borchardt mean and their applications”, J. Math. Inequal., 5 (2011), 601–609 | DOI | MR | Zbl
[14] Alzer H., Qiu S.-L., “Monotonicity theorems and inequalities for complete elliptic integrals”, J. Comput. Appl. Math., 172 (2004), 289–312 | DOI | MR | Zbl