Analog of an inequality of Bohr for integrals of~functions from~${L^{p}}(R^{n})$.~I
Problemy analiza, Tome 3 (2014) no. 1, pp. 16-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $p\in(2,+\infty],$ $n\ge1$ and $\Delta=(\Delta_1,\ldots,\Delta_n),$ $\Delta_k>0,$ $1\le k\le n.$ It is proved that for functions $\gamma(t)\in L^p(R^n)$ spectrum of which is separated from each of $n$ the coordinate hyperplanes on the distance not less than $\Delta_k,$ $1\le k\le n$ respectively, the inequality is valid: $$ \left\|\int\limits_{E_t}\gamma(\tau)\,d\tau\right\| _{L^{\infty}(R^n)}\le C^n(q)\left[\prod_{k=1}^n\frac{1} {\Delta_k^{1/q}}\right]\left\|\gamma(\tau)\right\|_{L^p(R^n)}, $$ where $t=(t_1,\ldots,t_n)\in R^n,$ $E_t=\{\tau\,|\,\tau=(\tau_1,\ldots,\tau_n)\in R^n,$ $\tau_j\in[0,t_j],$ if $t_j\ge0,$ and $\tau_j\in[t_j,0],$ if $t_j0,\ 1\le j\le n\},$ and the constant $C(q)>0,$ $\displaystyle\frac{1}{p}+ \frac{1}{q}=1$ does not depend on $\gamma(\tau)$ and vector $\Delta.$
Keywords: Inequality of Bohr.
@article{PA_2014_3_1_a1,
     author = {B. F. Ivanov},
     title = {Analog of an inequality of {Bohr} for integrals of~functions from~${L^{p}}(R^{n})${.~I}},
     journal = {Problemy analiza},
     pages = {16--34},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2014_3_1_a1/}
}
TY  - JOUR
AU  - B. F. Ivanov
TI  - Analog of an inequality of Bohr for integrals of~functions from~${L^{p}}(R^{n})$.~I
JO  - Problemy analiza
PY  - 2014
SP  - 16
EP  - 34
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2014_3_1_a1/
LA  - en
ID  - PA_2014_3_1_a1
ER  - 
%0 Journal Article
%A B. F. Ivanov
%T Analog of an inequality of Bohr for integrals of~functions from~${L^{p}}(R^{n})$.~I
%J Problemy analiza
%D 2014
%P 16-34
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2014_3_1_a1/
%G en
%F PA_2014_3_1_a1
B. F. Ivanov. Analog of an inequality of Bohr for integrals of~functions from~${L^{p}}(R^{n})$.~I. Problemy analiza, Tome 3 (2014) no. 1, pp. 16-34. http://geodesic.mathdoc.fr/item/PA_2014_3_1_a1/

[1] Bohr H., “Un théoréme général sur l'intégration d'un polynome trigonométrigue”, Comptes Rendus De L'Academie des sciences, 200:15 (1935), 1276–1277

[2] Bohr H., “Ein allgemeiner Sats über die Integration eines trigonometrischen Polynomials”, Prace Mathematyzcne Fizyczne, 1935, no. 43, 273–288; Collected Mathematical works, 2 (1952), 36

[3] Favard J., “Application de la formule sommatorie d'Euler á la démonstration de quelques propriétés extremales des integrales des fonctions periodiques on Presqueperiodiques”, Matematisk Tidsskrift. Series B, 1936, 81–94

[4] Levitan B.M., “On some generalization of S.N. Bernshtein and H. Bohr inequalities”, RAS USSR, XV:4 (1937), 169–172 | MR

[5] Hörmander L., “A new proof and a generalization of an inequality of Bohr”, Mathematica Scandinavica, 2 (1954), 33–45 | MR | Zbl

[6] Ivanov B. F., “On a generalization of an inequality of Bohr”, The Issues of Analysis, 2 (20):2 (2013), 21–57 | DOI | MR | Zbl

[7] Ivanov B. F., “The sufficient condition of the boundedness and the parameter differentiability of some class linear equations solutions”, Nonlinear dynamical systems, Collection of articles. Is. 1, Izdatelstvo SPbSU. SPb., SPb., 1997, 125–130

[8] Ivanov B. F., “Some condition of existence of bounded solutions for one class of nonlinear equations”, Nonlinear dynamical systems - 2007:, The theses of the reports of the international congress (Saint-Petersburg, 4–8 June 2007), Saint-Petersburg State University, SPb., 2007, 227

[9] Gelfand I.M., Shilov G. E., The generalized functions and the operations over them, iss. 1., PhM, M., 1959, 470 pp.

[10] Vladimirov V. S., The equations of mathematical physics, Nauka, M., 1971, 512 pp. | MR | Zbl

[11] Functional analysis, Series: “The reference mathematical library”, ed. S.G. Krein, Nauka, M., 1972, 554 pp. | MR

[12] Kolmogorov A.N., Fomin S.V., The elements of the functions theory and functional analysis, Nauka, M., 1968, 496 pp. | MR | Zbl

[13] Makarov B.M., Podkorytov A.N., The lectures on the real analysis, BHV-Petersburg, SPb., 2011, 688 pp.

[14] Dwight H. B., Tables of integrals and other mathematical data, Nauka, M., 1977, 224 pp.