On Carlson's and Shafer's inequalities
Problemy analiza, Tome 3 (2014) no. 1, pp. 3-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the authors refine the Carlson's inequalities for inverse cosine function, and the Shafer's inequalities for inverse tangent function.
Keywords: Carlson's inequality, Shafer's inequality, inverse trigonometric functions.
@article{PA_2014_3_1_a0,
     author = {B. A. Bhayo and J. Sandor},
     title = {On {Carlson's} and {Shafer's} inequalities},
     journal = {Problemy analiza},
     pages = {3--15},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2014_3_1_a0/}
}
TY  - JOUR
AU  - B. A. Bhayo
AU  - J. Sandor
TI  - On Carlson's and Shafer's inequalities
JO  - Problemy analiza
PY  - 2014
SP  - 3
EP  - 15
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2014_3_1_a0/
LA  - en
ID  - PA_2014_3_1_a0
ER  - 
%0 Journal Article
%A B. A. Bhayo
%A J. Sandor
%T On Carlson's and Shafer's inequalities
%J Problemy analiza
%D 2014
%P 3-15
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2014_3_1_a0/
%G en
%F PA_2014_3_1_a0
B. A. Bhayo; J. Sandor. On Carlson's and Shafer's inequalities. Problemy analiza, Tome 3 (2014) no. 1, pp. 3-15. http://geodesic.mathdoc.fr/item/PA_2014_3_1_a0/

[1] Anderson G. D., Vamanamurthy M. K., Vuorinen M., “Monotonicity Rules in Calculus”, Amer. Math. Month, 113:9 (2006), 805–816 | DOI | MR | Zbl

[2] Klén R., Visuri M., Vuorinen M., “On Jordan type inequalities for hyperbolic functions”, J. Ineq. Appl., 2010, Article ID 362548, 14 pp. | MR | Zbl

[3] Malesevic B. J., “One method for proving inequalities by computer”, J. Ineq. Appl., 8 (2007), Article ID 78691 | MR

[4] Malesevic B. J., “An application of $\lambda$-method on inequalities of Shafer–Fink type”, Math. Ineq. Appl., 10:3 (2007), 529–534 | MR | Zbl

[5] Neuman E. and Sándor J., “On some inequalities involving trigonometric and hyperbolic functions with emphasis on the Cusa–Huygens, Wilker, and Huygens inequalities”, Math. Inequal. Appl., 13:4 (2010), 715–723 | MR | Zbl

[6] Neuman E. and Sándor J., “Optimal inequalities for hyperbolic and trigonometric functions”, Bull. Math. Analysis Appl., 3:3 (2011), 177–181 | MR

[7] Sándor J., “Two sharp inequalities for trigonometric and hyperbolic functions”, Math. Inequal. Appl., 15:2 (2012), 409–413 | MR | Zbl

[8] Sándor J., “Sharp Cusa-Huygens and related inequalities”, Notes Number Theory Discrete Math., 19:1 (2013), 50–54

[9] Sándor J., and Oláh-Gál R., “On Cusa–Huygens type trigonometric and hyperbolic inequalities”, Acta Univ. Sapientiae, Mathematica, 4:2 (2012), 145–153 | MR | Zbl

[10] Sándor J., Trigonometric and hyperbolic inequalities, arXiv: 1105.0859

[11] Sun J., and Zhu L., “Six new Redheffer-type inequalities for circular and hyperbolic functions”, Comput. Math. Appl., 56:2 (2008), 522–529 | DOI | MR | Zbl

[12] Zhu L., “Sharpening Redheffer-type inequalities for circular functions”, App. Math. Lett., 22 (2009), 743–748 | DOI | MR | Zbl

[13] Anderson G. D., Vuorinen M., and Zhang X., Topics in special functions III, arXiv: 1209.1696

[14] Mitrinović D. S., Analytic Inequalities, Berlin, Springer-Verlag, 1970 | MR | Zbl

[15] Huygens C., Oeuvres Completes 1888–1940, Socié te Hollondaise des Science, Haga

[16] Lv Y., Wang G. and Chua Y., “A note on Jordan type inequalities for hyperbolic functions”, Appl. Math. Lett., 25 (2012), 505–508 | MR | Zbl

[17] Qi F., Cui L.-H., and Xu S.-L., “Some inequalities constructed by Tchebysheff's integral inequality”, Math. Inequal. Appl., 2:4 (1999), 517–528 | MR | Zbl

[18] Ogilvy C. S., Oppenheim A., Ivanoff V. F., Ford Jr. L. F., Fulkerson D. R., and Narayanan Jr. V. K., “Elementary problems and solutions: problems for solution: E1275-E1280”, Amer. Math. Monthly, 64:7 (1957), 504–505 | DOI | MR

[19] Oppenheim A., “E1277”, Amer. Math. Monthly, 64:6 (1957), 504 | MR

[20] Zhu L., “A solution of a problem of Oppeheim”, Math. Inequal. Appl., 10:1 (2007), 57–61 | MR | Zbl

[21] Baricz Á., “Functional inequalities involving Bessel and modified Bessel functions of the first kind”, Exposition. Math., 26:3 (2008), 279–293. | DOI | MR | Zbl

[22] Baricz Á., “Some inequalities involving generalized Bessel functions”, Math. Ineq. Appl., 10:4 (2007), 827–842 | MR | Zbl

[23] Qi F., Luo Q-.M., and Guo B.-N., “A simple proof of Oppenheim's double inequality relating to the cosine and sine functions”, J. Math. Inequal., 6:4 (2012), 645–654 | MR | Zbl

[24] Ruskeepää H., Mathematica. Navigator, 3rd ed., Academic Press, 2009 | Zbl

[25] Campan F. T., The history of number pi (Romanian), 2nd ed. Albatros ed., Romania, 1977.

[26] Carlson B. C., “Inequality for a symmetric elliptic integral”, Proc. Amer. Math. Soc., 25:3 (1970), 698–703 | DOI | MR | Zbl

[27] Chen C.-P., Cheung W.-S., and Wang W., “On Shafer and Carlson Inequalities”, J. Ineq. Appl., 2011 (2011), Article ID 840206, 10 pp. | MR

[28] Guo B.-N., and Qi F., “Sharpening and generalizations of Carlson's inequality for the arc cosine function”, Hacettepe Journal of Mathematics and Statistics, 39:3 (2010), 403–409 | MR | Zbl

[29] Zhao J.-L., Wei C.-F., Guo B.-N., and Qi F., “Sharpening and generalizations of Carlson's double inequality for the arc cosine function”, Hacettepe Journal of Mathematics and Statistics, 41:2 (2012), 201–209 | MR | Zbl

[30] Zhu L., “A source of inequalities for circular functions”, Comput. Math. Appl., 58 (2009), 1998–2004 | DOI | MR | Zbl

[31] Shafer R. E., “Problem E1867”, Amer. Math. Monthly, 74:6 (1967), 726–727 | DOI | MR

[32] Shafer R. E., Grinstein L. S., Marsh D. C. B., and Konhauser J. D. E., “Problems and solutions: solutions of elementary problems: E1867”, Amer. Math. Monthly, 1967, 74:6, 726–727 | DOI | MR

[33] Qi F., Zhang Sh.-Q., and Guo B.-N., “Sharpening and generalizations of Shafers inequality for the arc tangent function”, J. Ineq. Appl., 2009, Article ID 930294, 10 pp. | MR

[34] Alirezaei G., A sharp double inequality for the inverse tangent Function, arXiv: 1307.4983

[35] Abramowitz M., and Stegun I., eds., Handbook of mathematical functions with formulas, graphs and mathematical tables, National Bureau of Standards, Dover, New York, 1965

[36] Anderson G. D., Vamanamurthy M. K., and Vuorinen M., “Inequalities of quasiconformal mappings in the space”, Pacific J. Math., 160:1 (1993), 1–20 | DOI | MR

[37] Baricz Á., and Zhu L., “Extension of Oppenheims problem to Bessel functions”, J. Inequal. Appl., 2007, Article ID 82038, 7 pp. | MR | Zbl

[38] Guo B.-N., Luob Q.-M., and Qi F., “Sharpening and generalizations of Shafer–Finks double inequality for the arc sine function”, Filomat, 27:2 (2013), 261–265 | DOI

[39] Larsson L., “A new Carlson type inequality”, Math. Ineq. Appl., 6:1 (2003), 55–79 | MR | Zbl

[40] Oppenheim A. and Carver W. B., “Elementary problems and solutions: solutions: E1277”, Amer. Math. Monthly, 65:3 (1958), 206–209 | DOI | MR

[41] Qi F., Zhang S.-Q., and Guo B.-N., “Sharpening and generalizations of Shafers inequality for the arc tangent function”, J. Ineq. Appl, 2009 | MR

[42] Redheffer R., “Problem 5642”, Amer. Math. Monthly, 76 (1969), 422 | DOI | MR

[43] Sándor J., “On new refinements of Kober's and Jordan's trigonometric inequalities”, Notes Number Theory Discrete Math., 19:1 (2013), 73–83 | MR

[44] Zhu L., “On Shafer–Fink inequalities”, Math. Ineq. Appl., 8:4 (2005), 571–574 | MR | Zbl

[45] Zhu L., “On Shafer–Fink-type inequality”, J. Ineq. Appl., 4 (2007), Article ID 67430 | MR | Zbl