Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2014_3_1_a0, author = {B. A. Bhayo and J. Sandor}, title = {On {Carlson's} and {Shafer's} inequalities}, journal = {Problemy analiza}, pages = {3--15}, publisher = {mathdoc}, volume = {3}, number = {1}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2014_3_1_a0/} }
B. A. Bhayo; J. Sandor. On Carlson's and Shafer's inequalities. Problemy analiza, Tome 3 (2014) no. 1, pp. 3-15. http://geodesic.mathdoc.fr/item/PA_2014_3_1_a0/
[1] Anderson G. D., Vamanamurthy M. K., Vuorinen M., “Monotonicity Rules in Calculus”, Amer. Math. Month, 113:9 (2006), 805–816 | DOI | MR | Zbl
[2] Klén R., Visuri M., Vuorinen M., “On Jordan type inequalities for hyperbolic functions”, J. Ineq. Appl., 2010, Article ID 362548, 14 pp. | MR | Zbl
[3] Malesevic B. J., “One method for proving inequalities by computer”, J. Ineq. Appl., 8 (2007), Article ID 78691 | MR
[4] Malesevic B. J., “An application of $\lambda$-method on inequalities of Shafer–Fink type”, Math. Ineq. Appl., 10:3 (2007), 529–534 | MR | Zbl
[5] Neuman E. and Sándor J., “On some inequalities involving trigonometric and hyperbolic functions with emphasis on the Cusa–Huygens, Wilker, and Huygens inequalities”, Math. Inequal. Appl., 13:4 (2010), 715–723 | MR | Zbl
[6] Neuman E. and Sándor J., “Optimal inequalities for hyperbolic and trigonometric functions”, Bull. Math. Analysis Appl., 3:3 (2011), 177–181 | MR
[7] Sándor J., “Two sharp inequalities for trigonometric and hyperbolic functions”, Math. Inequal. Appl., 15:2 (2012), 409–413 | MR | Zbl
[8] Sándor J., “Sharp Cusa-Huygens and related inequalities”, Notes Number Theory Discrete Math., 19:1 (2013), 50–54
[9] Sándor J., and Oláh-Gál R., “On Cusa–Huygens type trigonometric and hyperbolic inequalities”, Acta Univ. Sapientiae, Mathematica, 4:2 (2012), 145–153 | MR | Zbl
[10] Sándor J., Trigonometric and hyperbolic inequalities, arXiv: 1105.0859
[11] Sun J., and Zhu L., “Six new Redheffer-type inequalities for circular and hyperbolic functions”, Comput. Math. Appl., 56:2 (2008), 522–529 | DOI | MR | Zbl
[12] Zhu L., “Sharpening Redheffer-type inequalities for circular functions”, App. Math. Lett., 22 (2009), 743–748 | DOI | MR | Zbl
[13] Anderson G. D., Vuorinen M., and Zhang X., Topics in special functions III, arXiv: 1209.1696
[14] Mitrinović D. S., Analytic Inequalities, Berlin, Springer-Verlag, 1970 | MR | Zbl
[15] Huygens C., Oeuvres Completes 1888–1940, Socié te Hollondaise des Science, Haga
[16] Lv Y., Wang G. and Chua Y., “A note on Jordan type inequalities for hyperbolic functions”, Appl. Math. Lett., 25 (2012), 505–508 | MR | Zbl
[17] Qi F., Cui L.-H., and Xu S.-L., “Some inequalities constructed by Tchebysheff's integral inequality”, Math. Inequal. Appl., 2:4 (1999), 517–528 | MR | Zbl
[18] Ogilvy C. S., Oppenheim A., Ivanoff V. F., Ford Jr. L. F., Fulkerson D. R., and Narayanan Jr. V. K., “Elementary problems and solutions: problems for solution: E1275-E1280”, Amer. Math. Monthly, 64:7 (1957), 504–505 | DOI | MR
[19] Oppenheim A., “E1277”, Amer. Math. Monthly, 64:6 (1957), 504 | MR
[20] Zhu L., “A solution of a problem of Oppeheim”, Math. Inequal. Appl., 10:1 (2007), 57–61 | MR | Zbl
[21] Baricz Á., “Functional inequalities involving Bessel and modified Bessel functions of the first kind”, Exposition. Math., 26:3 (2008), 279–293. | DOI | MR | Zbl
[22] Baricz Á., “Some inequalities involving generalized Bessel functions”, Math. Ineq. Appl., 10:4 (2007), 827–842 | MR | Zbl
[23] Qi F., Luo Q-.M., and Guo B.-N., “A simple proof of Oppenheim's double inequality relating to the cosine and sine functions”, J. Math. Inequal., 6:4 (2012), 645–654 | MR | Zbl
[24] Ruskeepää H., Mathematica. Navigator, 3rd ed., Academic Press, 2009 | Zbl
[25] Campan F. T., The history of number pi (Romanian), 2nd ed. Albatros ed., Romania, 1977.
[26] Carlson B. C., “Inequality for a symmetric elliptic integral”, Proc. Amer. Math. Soc., 25:3 (1970), 698–703 | DOI | MR | Zbl
[27] Chen C.-P., Cheung W.-S., and Wang W., “On Shafer and Carlson Inequalities”, J. Ineq. Appl., 2011 (2011), Article ID 840206, 10 pp. | MR
[28] Guo B.-N., and Qi F., “Sharpening and generalizations of Carlson's inequality for the arc cosine function”, Hacettepe Journal of Mathematics and Statistics, 39:3 (2010), 403–409 | MR | Zbl
[29] Zhao J.-L., Wei C.-F., Guo B.-N., and Qi F., “Sharpening and generalizations of Carlson's double inequality for the arc cosine function”, Hacettepe Journal of Mathematics and Statistics, 41:2 (2012), 201–209 | MR | Zbl
[30] Zhu L., “A source of inequalities for circular functions”, Comput. Math. Appl., 58 (2009), 1998–2004 | DOI | MR | Zbl
[31] Shafer R. E., “Problem E1867”, Amer. Math. Monthly, 74:6 (1967), 726–727 | DOI | MR
[32] Shafer R. E., Grinstein L. S., Marsh D. C. B., and Konhauser J. D. E., “Problems and solutions: solutions of elementary problems: E1867”, Amer. Math. Monthly, 1967, 74:6, 726–727 | DOI | MR
[33] Qi F., Zhang Sh.-Q., and Guo B.-N., “Sharpening and generalizations of Shafers inequality for the arc tangent function”, J. Ineq. Appl., 2009, Article ID 930294, 10 pp. | MR
[34] Alirezaei G., A sharp double inequality for the inverse tangent Function, arXiv: 1307.4983
[35] Abramowitz M., and Stegun I., eds., Handbook of mathematical functions with formulas, graphs and mathematical tables, National Bureau of Standards, Dover, New York, 1965
[36] Anderson G. D., Vamanamurthy M. K., and Vuorinen M., “Inequalities of quasiconformal mappings in the space”, Pacific J. Math., 160:1 (1993), 1–20 | DOI | MR
[37] Baricz Á., and Zhu L., “Extension of Oppenheims problem to Bessel functions”, J. Inequal. Appl., 2007, Article ID 82038, 7 pp. | MR | Zbl
[38] Guo B.-N., Luob Q.-M., and Qi F., “Sharpening and generalizations of Shafer–Finks double inequality for the arc sine function”, Filomat, 27:2 (2013), 261–265 | DOI
[39] Larsson L., “A new Carlson type inequality”, Math. Ineq. Appl., 6:1 (2003), 55–79 | MR | Zbl
[40] Oppenheim A. and Carver W. B., “Elementary problems and solutions: solutions: E1277”, Amer. Math. Monthly, 65:3 (1958), 206–209 | DOI | MR
[41] Qi F., Zhang S.-Q., and Guo B.-N., “Sharpening and generalizations of Shafers inequality for the arc tangent function”, J. Ineq. Appl, 2009 | MR
[42] Redheffer R., “Problem 5642”, Amer. Math. Monthly, 76 (1969), 422 | DOI | MR
[43] Sándor J., “On new refinements of Kober's and Jordan's trigonometric inequalities”, Notes Number Theory Discrete Math., 19:1 (2013), 73–83 | MR
[44] Zhu L., “On Shafer–Fink inequalities”, Math. Ineq. Appl., 8:4 (2005), 571–574 | MR | Zbl
[45] Zhu L., “On Shafer–Fink-type inequality”, J. Ineq. Appl., 4 (2007), Article ID 67430 | MR | Zbl