Inequalities connecting generalized trigonometric functions with their inverses
Problemy analiza, Tome 2 (2013) no. 2, pp. 82-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

Motivated by the recent work [1], in this paper we study the relations of generalized trigonometric and hyperbolic functions of two parameters with their inverse functions.
Keywords: Inequalities; generalized trigonometric functions; Eigenfunctions and Incomplete beta function.
@article{PA_2013_2_2_a4,
     author = {B. A. Bhayo and J. S\'andor},
     title = {Inequalities connecting generalized trigonometric functions with their inverses},
     journal = {Problemy analiza},
     pages = {82--90},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2013_2_2_a4/}
}
TY  - JOUR
AU  - B. A. Bhayo
AU  - J. Sándor
TI  - Inequalities connecting generalized trigonometric functions with their inverses
JO  - Problemy analiza
PY  - 2013
SP  - 82
EP  - 90
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2013_2_2_a4/
LA  - en
ID  - PA_2013_2_2_a4
ER  - 
%0 Journal Article
%A B. A. Bhayo
%A J. Sándor
%T Inequalities connecting generalized trigonometric functions with their inverses
%J Problemy analiza
%D 2013
%P 82-90
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2013_2_2_a4/
%G en
%F PA_2013_2_2_a4
B. A. Bhayo; J. Sándor. Inequalities connecting generalized trigonometric functions with their inverses. Problemy analiza, Tome 2 (2013) no. 2, pp. 82-90. http://geodesic.mathdoc.fr/item/PA_2013_2_2_a4/

[1] Sandor J., “On certain inequalities for hyperbolic and trigonometric functions”, J. Math. Ineq http://files.ele-math.com/preprints/jmi-1062-pre.pdf | MR

[2] Lindqvist P., “Some remarkable sine and cosine functions”, Ricerche di Matematica, XLIV (1995), 269–290 | MR | Zbl

[3] Bhayo B. A., Vuorinen M., Inequalities for eigenfunctions of the $p$-Laplacian, 23 pp., January 2011, arXiv: 1101.3911[math.CA] | MR

[4] Bushell P. J., Edmunds D. E., “Remarks on generalised trigonometric functions”, Rocky Mountain J. Math., 42:1 (2012), 25–57 | DOI | MR | Zbl

[5] Biezuner R. J., Ercole G., Martins E. M., “Computing the first eigenvalue of the $p$-Laplacian via the inverse power method”, J. Funct. Anal., 257:1 (2009), 243–270 | DOI | MR | Zbl

[6] Drabek P., Manasevich R., “On the closed solution to some $p$-Laplacian nonhomogeneous eigenvalue problems”, Differential Integral Equations, 12:6 (1999), 773–788 | MR | Zbl

[7] Klen R., Vuorinen M., Zhang X., Inequalities for the generalized trigonometric and hyperbolic functions, 12 pp., October 2012, arXiv: 1210.6749 | MR

[8] Lang J., Edmunds D. E., Eigenvalues, Embeddings and Generalised Trigonometric Functions, Lecture Notes in Mathematics, Springer-Verlag, 2011 | DOI | MR

[9] Lindqvist P., Peetre J., “$p$-arclength of the $q$-circle”, The Mathematics Student, 72:1-4, (2003), 139-145 | MR | Zbl

[10] Bhayo B. A., Vuorinen M., “On generalized trigonometric functions with two parameters”, J. Approx. Theory, 164 (2012), 1415–1426 | DOI | MR | Zbl

[11] Edmunds D. E., Gurka P., Lang J., “Properties of generalized trigonometric functions”, J. Approx. Theory, 164 (2012), 47–56 | DOI | MR | Zbl

[12] Takeuchi S., “Generalized Jacobian elliptic functions and their application to bifurcation problems associated with $p$-Laplacian”, J. Math. Anal. Appl., 385 (2012), 24–35 | DOI | MR | Zbl

[13] Baricz A. , Bhayo B. A., Vuorinen M., Turan type inequalities for generalized inverse trigonometric functions, 10 pp., May 2013, arXiv: 1305.0938[math.CA]

[14] Klen R., Visuri M., Vuorinen M., “On Jordan type inequalities for hyperbolic functions”, J. Ineq. Appl., 2010 (2010), 14 pp. | MR

[15] Anderson G. D., Vamanamurthy M. K., Vuorinen M., Conformal invariants, inequalities and quasiconformal maps, J. Wiley, 1997, 505 pp. | MR

[16] Kuczma M., An introduction to the theory of functional equations and inequalities. Cauchy's equation and Jensen's inequality. With a Polish summary, Prace Naukowe Uniwersytetu Slaskiego w Katowicach [Scientific Publications of the University of Silesia], 489, Uniwersytet Ślaski, Katowice; Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1985, 523 pp. | MR | Zbl

[17] Sroysang B., “Inequalities for the incomplete beta function”, Mat. Aeterna, 3:4 (2013), 241–244 | MR

[18] Nauka, 1979

[19] Baricz A., “Functional inequalities involving special functions II”, J. Math. Anal. Appl., 327:2 (2007), 1202–1213 | DOI | MR | Zbl

[20] Carlson B. C., “Some inequalities for hypergeometric functions”, Proc. of Amer. Math. Soc., 17:1 (1966), 32–39 | DOI | MR | Zbl

[21] Y.-M Chu, Y.-P Jiang and M.-Kun Wang, Inequalities for generalized trigonometric and hyperbolic sine functions, 7 pp., December 2012, arXiv: 1212.4681

[22] W.-D. Jiang and F. Qi., Geometric convexity of the generalized sine and the generalized hyperbolic sine, arXiv: 1301.3264