Solvability of the difference equations for the dynamics of cumulative sums
Problemy analiza, Tome 2 (2013) no. 2, pp. 68-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the linear system of difference equations for the cumulative sum used in detecting network attacks. In the flow of events each can be dangerous with the known probability, in this case the cumulative sum is increased to the certain amount. In the opposite case it is reduced. Suspicious events are not dangerous if rare, therefore the cumulative sum traces the relative amount of them. Reaching the threshold means the alarm situation, while hitting zero is the reset. The average number of events up to the alarm for the initial value of the cumulative sum is driven by the system of difference equations. We construct the solution, prove that it is unique (there is only one bounded solution), establish some properties of this solution. In particular, it is positive, piecewise constant and non-increasing. The used technique is similar to the sweeping method and the maximum principle widely used in mathematical physics. Solvability is established using the spectral theory. The proof of the existence theorem is constructive: the presented algorithm can be used for calculating the solution.
Keywords: difference equations; boundary value difference problems.
@article{PA_2013_2_2_a3,
     author = {N. N. Nikitina and I. A. Chernov},
     title = {Solvability of the difference equations for the dynamics of cumulative sums},
     journal = {Problemy analiza},
     pages = {68--81},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PA_2013_2_2_a3/}
}
TY  - JOUR
AU  - N. N. Nikitina
AU  - I. A. Chernov
TI  - Solvability of the difference equations for the dynamics of cumulative sums
JO  - Problemy analiza
PY  - 2013
SP  - 68
EP  - 81
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2013_2_2_a3/
LA  - ru
ID  - PA_2013_2_2_a3
ER  - 
%0 Journal Article
%A N. N. Nikitina
%A I. A. Chernov
%T Solvability of the difference equations for the dynamics of cumulative sums
%J Problemy analiza
%D 2013
%P 68-81
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2013_2_2_a3/
%G ru
%F PA_2013_2_2_a3
N. N. Nikitina; I. A. Chernov. Solvability of the difference equations for the dynamics of cumulative sums. Problemy analiza, Tome 2 (2013) no. 2, pp. 68-81. http://geodesic.mathdoc.fr/item/PA_2013_2_2_a3/

[1] Loukas G., Oke G., “Protection Against Denial of Service Attacks: A Survey”, The Computer Journal, 53:7 (2010), 1020–1037 | DOI

[2] Kim S., Li S., Long H., Pyke R., “Analyzing Network Traffic for Malicious Activity”, Canadian Applied Mathematics Quarterly, 12 (2004), 479–489 | MR

[3] Kotenko D. I., Kotenko I. V., Saenko I. B., “Modelirovanie atak v bolshikh kompyuternykh setyakh”, Materialy XVII mezhdunarodnoi zaochnoi nauchno-prakticheskoi konferentsii “Tekhnicheskie nauki — ot teorii k praktike”, Chast I, SibAK, Novosibirsk, 2013, 12–16

[4] Page E. S., “Continuous Inspection Schemes”, Biometrika, 41 (1954), 100–114 | DOI | MR

[5] Mazalov V. V., Zhuravlev D. N., “O metode kumulyativnykh summ v zadache obnaruzheniya izmeneniya trafika kompyuternykh setei”, Programmirovanie, 2002, no. 6, 156–162 | MR

[6] Nikitina N. N., Mazalov V. V., “CUSUM method in detection of a change point for Bernoulli distribution”, Extended abstracts of the International workshop “Networking Games and Managements”, Petrozavodsk, 2013, 62–69

[7] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, 3-e izd., Nauka, M., 1984 | MR | Zbl

[8] Nechepurenko M. I., Iteratsii veschestvennykh funktsii i funktsionalnye uravneniya, Novosibirsk, 1997 | MR

[9] Sharkovskii A. N., Maistrenko Yu.L., Romanenko E.Yu., Raznostnye uravneniya i ikh prilozheniya, Nauk. dumka, Kiev, 1986 | MR

[10] Prusinska A. Tret'yakov A., “The theorem on existence of singular solutions to nonlinear equations”, Tr. PetrGU. Ser. Matematika, 2005, no. 12, 22–36 | MR

[11] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, 7-e izd., Fizmatlit, M., 2004 | MR | Zbl

[12] Bakhvalov N.S., Zhidkov N.P., Kobelkov G. M., Chislennye metody, Fizmatlit, Moskva-Sankt-Peterburg, 2000

[13] Glazebrook K., Economou F., “PDL: The Perl Data Language”, Dr. Dobb's Journal, 22:9 (1997), 19.08.2013 http://www.ddj.com/184410442