Conformal mapping of half-plane onto circual numerable polygon with double symmetry
Problemy analiza, Tome 2 (2013) no. 2, pp. 59-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

Recently conformal mapping of the upper half-plane onto simply connected domains of the half-plane type with the symmetry of transfer along the real axis by $2\pi$, with a boundary consisting of circular arcs, straight line segments and rays have been used in mathematical physics. In the paper it is proved that the conformal mapping of the upper half-plane onto such domain that has the additional property of symmetry with respect to the vertical straight $\omega=\pi+i\upsilon, \upsilon\in \mathbb{R}$ is a solution of a differential equation of the third order of Christoffel-Schwarz equation type for circular polygons. The received equation depends on the values of the angles at the finite number of vertices, their counter images, the accessory parameters. The proof is based on the Riemann-Schwarz principle of symmetry and the Christoffel-Schwarz formula for circular polygons. The system of two linear algebraic equations for the accessory parameters has been written. For mapping onto the specific circular numerable-polygon with double symmetry, the diffenerential equation, equivalent to the Fuchs class equation with three singular points, has been reduced to the Gauss equation. The map is represented in terms of hypergeometric integrals.
Keywords: circular numerable polygon; conformal mapping; symmetry of transfer; Schwartz derivative; Gauss equation.
@article{PA_2013_2_2_a2,
     author = {I. A. Kolesnikov},
     title = {Conformal mapping of half-plane onto circual numerable polygon with double symmetry},
     journal = {Problemy analiza},
     pages = {59--67},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PA_2013_2_2_a2/}
}
TY  - JOUR
AU  - I. A. Kolesnikov
TI  - Conformal mapping of half-plane onto circual numerable polygon with double symmetry
JO  - Problemy analiza
PY  - 2013
SP  - 59
EP  - 67
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2013_2_2_a2/
LA  - ru
ID  - PA_2013_2_2_a2
ER  - 
%0 Journal Article
%A I. A. Kolesnikov
%T Conformal mapping of half-plane onto circual numerable polygon with double symmetry
%J Problemy analiza
%D 2013
%P 59-67
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2013_2_2_a2/
%G ru
%F PA_2013_2_2_a2
I. A. Kolesnikov. Conformal mapping of half-plane onto circual numerable polygon with double symmetry. Problemy analiza, Tome 2 (2013) no. 2, pp. 59-67. http://geodesic.mathdoc.fr/item/PA_2013_2_2_a2/

[1] Aleksandrov I. A., Teoriya funktsii kompleksnogo peremennogo, Tomsk. gos. un-t, Tomsk, 2002, 510 pp.

[2] Aleksandrov I. A., Parametricheskie prodolzheniya v teorii odnolistnykh funktsii, Nauka, Fizmatlit, M., 1976, 344 pp. | MR

[3] Kufarev P. P., “Ob odnom metode chislennogo opredeleniya parametrov v integrale Kristoffelya-Shvartsa”, DAN SSSR, 57:6 (1947), 535–537 | MR | Zbl

[4] Golubev V. V., Lektsii po analiticheskoi teorii differentsialnykh uravnenii, 2-e izd., GTTI, M.-L., 1950, 436 pp.

[5] Floryan J. M., “Schwarz-Christoffel methods for conformal mapping of regions with a periodic boundary”, J. comput. and applied math., 1993, no. 46, 77–102 | DOI | MR | Zbl

[6] Aleksandrov I. A., Kopaneva L. S., “Levnerovskie semeistva otobrazhenii poluploskosti na oblasti s simmetriei perenosa”, Vestn. Tomsk. un-ta., 2004, no. 284, 5–7

[7] Kolesnikov I. A., “Otobrazhenie na krugovoi schetnougolnik s simmetriei perenosa”, Vestn. Tomsk. un-ta., 2013, no. 2(22), 33–44 | MR

[8] Verbitskii I. L., “Quasistatic green function method as a powerful tool of diffraction problems solving”, Mathiarials of the VI international conference “Mathematical methods in electromagnetic theory” (10–13 Sep. Lviv, Ukraine), 1996, 358–361 | DOI

[9] Neviere M., Cadilhac M., Petit R., “Application of conformal mapping to the diffraction of electromagnetic waves by a grating”, Antennas propagation, 21:1 (1973), 37–46 | DOI | MR

[10] Baron A, Quadrio M., Vigevano L., “On the boundary layer/riblets interaction mechanisms and the prediction of turbulent drag reduction”, Int L. J. heat and fluid flow, 14:4 (1993), 324–332 | DOI

[11] Shabat B. V., Vvedenie v kompleksnyi analiz, v 2 t., v. 1, 4-e izd., Lan, SPb, 2004, 336 pp. | MR