Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2013_2_2_a1, author = {B. F. Ivanov}, title = {On a generalization of an inequality of {Bohr}}, journal = {Problemy analiza}, pages = {21--58}, publisher = {mathdoc}, volume = {2}, number = {2}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PA_2013_2_2_a1/} }
B. F. Ivanov. On a generalization of an inequality of Bohr. Problemy analiza, Tome 2 (2013) no. 2, pp. 21-58. http://geodesic.mathdoc.fr/item/PA_2013_2_2_a1/
[1] Bohr H., Un théoréme général sur l'intégration d'un polynome trigonométrigue, Comptes Rendus De L'Academie des sciences, 200, no. 15, 1935
[2] Bohr H., “Ein allgemeiner Sats über die Integration eines trigonometrischen Polynomials”, Prace Mathematyzcne Fizyczne, 43 (1935), 273–288; Collected Mathematical works, v. 2, 1952, 36
[3] Favard J., “Sur une propriete extremale de l'integrale d'une function periodique”, Cjmptes Rendus De L'Academie des Sciences, 202 (1936), 273–276
[4] Favard J., “Application de la formule sommatorie d'Euler á la demonstration de quelques propriétés extremales des integrales des fonctions periodiques on Presque-periodiques”, Matematisk Tidsskrift, 1936, 81–94
[5] Levitan B. M., “Ob odnom obobschenii neravenstv S. N. Bernshteina i N. Bohr'a”, DAN SSSR., XV:4 (1937), 169–172 | MR
[6] Hormander L., “A new proof and a generalization of an inequality of Bohr”, Mathematica Scandinavica, 2 (1954), 33–45 | MR | Zbl
[7] Kamzolov A. I., “O neravenstve Bora-Favara dlya funktsii na kompaktnykh simmetricheskikh prostranstvakh ranga I”, Matematicheskie zametki, 33:2 (1983), 187–193 | MR | Zbl
[8] Akopyan R. R., “Neravenstva Bora i Bernshteina dlya analiticheskikh i ogranichennykh v poluploskosti funktsii”, Materialy mezhdunarodnoi nauchnoi konferentsii “Sovremennye problemy matematiki, mekhaniki, informatiki” (Rossiya. Tula 28–30 noyabrya 2006g.)
[9] Baskakov A. G., SintyaevaK. A., “O neravenstvakh Bora-Favara dlya operatorov”, Izvestiya vuzov. Matematika, 2009, no. 12, 14–21 | MR | Zbl
[10] Yudin V. A. K neravenstvu Bora, Trudy instituta matematiki i mekhaniki Uralskogo otdeleniya RAN, 16:4 (2010), 312–313
[11] Kuptsov N. P., “Pryamye i obratnye teoremy teorii priblizhenii i polugruppy operatorov”, Uspekhi matematicheskikh nauk, XXIII:4(142) (1968), 118–178
[12] Bredikhina E. A., “O priblizhenii pochti-periodicheskikh funtsii s ogranichennym spektrom”, Matematicheskii sbornik, 56(98):1 (1962), 59–76 | Zbl
[13] Ivanov B. F., “Chastotnyi kriterii ogranichennosti reshenii odnogo klassa lineinykh sistem”, Differentsialnye uravneniya, 33:5 (1997), 704–706 | MR | Zbl
[14] Ivanov B. F., “Chastotnyi kriterii gladkosti po parametram reshenii odnogo klassa lineinykh sistem”, Differentsialnye uravneniya, 33:7 (1997), 1001 | MR | Zbl
[15] Funktsionalnyi analiz, Spravochnaya matematicheskaya biblioteka, ed. S. G. Kreina, Nauka, M., 1972
[16] Kolmogorov A.N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1968 | MR | Zbl
[17] Titchmarsh E., Vvedenie v teoriyu integralov Fure, Gostekhizdat, M. L., 1948
[18] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR
[19] Burbaki N., Integrirovanie. Mery, integrirovanie mer, Nauka, M., 1967 | MR