On a generalization of an inequality of Bohr
Problemy analiza, Tome 2 (2013) no. 2, pp. 21-58

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $p\in (1, 2], n\ge 1, S\subseteq R^{n}$ and $\Gamma(S, p)$— the set of all functions, $\gamma(t)\in L ^{p}(R ^{n})$ the support of the Fourier transform of which lies in $S$. We obtain the inequality conditions $||\int \limits_{E_t}\gamma(\tau)d\tau|| _{L ^{\infty}(R^n)}\le C||\gamma(\tau)|| _{L ^{p}(R^n)}$, where $t=(t _{1}, t _{2}, \dots , t _{n})\in R^{n}, E _{t} = \{\tau|\tau=(\tau _{1},\tau _{2},\dots ,\tau _{n})\in R^{n}, \tau_j\in [0,t_j]$, if $ t_j\ge 0$ and $\tau_{j}\in (t_j,0]$, if $\tau_{j} 0, 1\le j\le n\}, \gamma(\tau)\in \Gamma(S,p)$ and constant $C$ does not depend on $\gamma(t)$. Also were considered some validity conditions on the inequality on non-trivial subsets $\Gamma(S, p)$ in cases, where they were not satisfied on the whole $\Gamma(S, p)$.
Keywords: inequality of Bohr.
@article{PA_2013_2_2_a1,
     author = {B. F. Ivanov},
     title = {On a generalization of an inequality of {Bohr}},
     journal = {Problemy analiza},
     pages = {21--58},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PA_2013_2_2_a1/}
}
TY  - JOUR
AU  - B. F. Ivanov
TI  - On a generalization of an inequality of Bohr
JO  - Problemy analiza
PY  - 2013
SP  - 21
EP  - 58
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2013_2_2_a1/
LA  - ru
ID  - PA_2013_2_2_a1
ER  - 
%0 Journal Article
%A B. F. Ivanov
%T On a generalization of an inequality of Bohr
%J Problemy analiza
%D 2013
%P 21-58
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2013_2_2_a1/
%G ru
%F PA_2013_2_2_a1
B. F. Ivanov. On a generalization of an inequality of Bohr. Problemy analiza, Tome 2 (2013) no. 2, pp. 21-58. http://geodesic.mathdoc.fr/item/PA_2013_2_2_a1/