Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2013_2_1_a2, author = {E. G. Ganenkova and V. V. Starkov}, title = {Asymptotic values of functions, analytic in planar domain}, journal = {Problemy analiza}, pages = {38--42}, publisher = {mathdoc}, volume = {2}, number = {1}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2013_2_1_a2/} }
E. G. Ganenkova; V. V. Starkov. Asymptotic values of functions, analytic in planar domain. Problemy analiza, Tome 2 (2013) no. 1, pp. 38-42. http://geodesic.mathdoc.fr/item/PA_2013_2_1_a2/
[1] Gross W., “Eine gauze Funktion für die jede Komplexe Zahl Konvergenzwert ist”, Math. Ann., 79 (1918), 201–208 | DOI | MR | Zbl
[2] Encyclopedia of Mathematics, [S. l.], v. 1 (A-B), Kluwer Academic Publishers, 1987
[3] Collingwood E. F., Lohwater A. J., The theory of cluster sets, Collingwood Lohwater Cambridge University Press, Cambridge, 1966 | MR
[4] Liczberski P., Starkov V. V., “On locally biholomorhic mappings from multi-connected onto simply connected domains”, Ann. Polon. Math., 85:2 (2005), 135–143 | DOI | MR | Zbl
[5] Goluzin G. M., Geometric Theory of Functions ofa Complex Variable, American Mathematical Scociety, Providence, R. I., 1969 | MR | Zbl
[6] Starkov V. V., “Locally biholomorphic mappings of multiconnected domains”, Sib. Math. J., 48:4 (2007), 733–739 | DOI | MR | Zbl