Asymptotic values of functions, analytic in planar domain
Problemy analiza, Tome 2 (2013) no. 1, pp. 38-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

In [1] W. Gross constructed the example of an entire function of infinite order whose set of asymptotic values is equal to the extended complex plain. We obtain an analog of Gross' result for functions, analytic in planar domains of arbitrary connectivity with isolated boundary fragment.
Keywords: analytic function; asymptotic value; isolated boundary fragment.
@article{PA_2013_2_1_a2,
     author = {E. G. Ganenkova and V. V. Starkov},
     title = {Asymptotic values of functions, analytic in planar domain},
     journal = {Problemy analiza},
     pages = {38--42},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2013_2_1_a2/}
}
TY  - JOUR
AU  - E. G. Ganenkova
AU  - V. V. Starkov
TI  - Asymptotic values of functions, analytic in planar domain
JO  - Problemy analiza
PY  - 2013
SP  - 38
EP  - 42
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2013_2_1_a2/
LA  - en
ID  - PA_2013_2_1_a2
ER  - 
%0 Journal Article
%A E. G. Ganenkova
%A V. V. Starkov
%T Asymptotic values of functions, analytic in planar domain
%J Problemy analiza
%D 2013
%P 38-42
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2013_2_1_a2/
%G en
%F PA_2013_2_1_a2
E. G. Ganenkova; V. V. Starkov. Asymptotic values of functions, analytic in planar domain. Problemy analiza, Tome 2 (2013) no. 1, pp. 38-42. http://geodesic.mathdoc.fr/item/PA_2013_2_1_a2/

[1] Gross W., “Eine gauze Funktion für die jede Komplexe Zahl Konvergenzwert ist”, Math. Ann., 79 (1918), 201–208 | DOI | MR | Zbl

[2] Encyclopedia of Mathematics, [S. l.], v. 1 (A-B), Kluwer Academic Publishers, 1987

[3] Collingwood E. F., Lohwater A. J., The theory of cluster sets, Collingwood Lohwater Cambridge University Press, Cambridge, 1966 | MR

[4] Liczberski P., Starkov V. V., “On locally biholomorhic mappings from multi-connected onto simply connected domains”, Ann. Polon. Math., 85:2 (2005), 135–143 | DOI | MR | Zbl

[5] Goluzin G. M., Geometric Theory of Functions ofa Complex Variable, American Mathematical Scociety, Providence, R. I., 1969 | MR | Zbl

[6] Starkov V. V., “Locally biholomorphic mappings of multiconnected domains”, Sib. Math. J., 48:4 (2007), 733–739 | DOI | MR | Zbl