Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2013_2_1_a0, author = {K. F. Amozova}, title = {Sufficient conditions of $\alpha$-accessibility of domain in nonsmooth case}, journal = {Problemy analiza}, pages = {3--13}, publisher = {mathdoc}, volume = {2}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PA_2013_2_1_a0/} }
K. F. Amozova. Sufficient conditions of $\alpha$-accessibility of domain in nonsmooth case. Problemy analiza, Tome 2 (2013) no. 1, pp. 3-13. http://geodesic.mathdoc.fr/item/PA_2013_2_1_a0/
[1] Amozova K. F., Starkov V. V., “Alfa-dostizhimye oblasti, negladkii sluchai”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 13:3 (2013), 3–8
[2] Liczberski P., Starkov V. V., “Domains in $\mathbb{R}^n$ with conical accessible boundary”, J. Math. Anal. Appl., 408:2 (2013), 547–560 | DOI | MR
[3] Liczberski P., Starkov V. V., “Planar $\alpha$-angularly starlike domains, $\alpha$-angularly starlike functions and their generalizations to multi-dimensional case”, 60 years of analytic functions in Lublin in memory of our professors and friends Jan G. Krzyz, Zdzislaw Lewandowski and Wojciech Szapiel (University of Economics and Innovation in Lublin), Innovatio Press Scientific publishing house, Lublin, 2012, 117–124 | MR
[4] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl
[5] Dolzhenko E. P., “Granichnye svoistva proizvolnykh funktsii”, Izv. AN SSSR, Ser. Matematika, 31 (1967), 3–14 | DOI | Zbl
[6] Adams R. A., Fournier J., “Cone conditions and properties of Sobolev spaces”, J. Math. Anal. Appl., 61 (1977), 713–734 | DOI | MR | Zbl
[7] Zaremba S., “Sur le principe de Direchlet”, Acta Math., 34 (1911), 293–316 | DOI | MR | Zbl
[8] Dudova A. S., “Usloviya zvezdnosti lebegova mnozhestva differentsiruemoi po napravleniyam funktsii”, Sb. nauch. tr. “Matematika. Mekhanika”, 5 (2003), 30–33, Izd-vo Sarat. un-ta, Saratov
[9] Starkov V. V., “Usloviya zvezdoobraznosti oblastei v $\mathbb{R}^n$”, Tr. PetrGU. Ser. Matematika, 2011, no. 18, 70–82 | MR