The Tauberian theorems for the slowly variating with residual functions and their applications
Problemy analiza, Tome 1 (2012) no. 1, pp. 32-38
Cet article a éte moissonné depuis la source Math-Net.Ru
E. Wirsing setted up a problem in 1967 year: Is it possible to reduce the estimation $\sum\limits_{n\le x}f(n)=o\left(\frac {x}{\log x}\sum\limits_{n\le x}\frac{f(n)}{n}\right), x\to \infty(1)$ from the estimation $\sum\limits_{p\le x}\frac {f(p)\log p}{p}=o(\log x),x\to \infty(2)$. Here $n$ is a positive enteger, $p$ is a prime number. Let us denote the right-side sum in formula (2) by $m(x)$. B. V. Levin and A. S. Finelabe had proved that the statement (2) did not emply the statement (1). The function $f(n)$ of their conterexample is such that $m(x)$ is bounded. But if $m(x)$ is not bounded that Wirsing problem is opened. Two the Tauberian theorems is proved in this paper and it is established that if $m(x)$ is not bounded that the condition (2) is equivalent that $m(e^{t})$ is slowly variating with the residual.
@article{PA_2012_1_1_a3,
author = {B. M. Shirokow},
title = {The {Tauberian} theorems for the slowly variating with residual functions and their applications},
journal = {Problemy analiza},
pages = {32--38},
year = {2012},
volume = {1},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PA_2012_1_1_a3/}
}
B. M. Shirokow. The Tauberian theorems for the slowly variating with residual functions and their applications. Problemy analiza, Tome 1 (2012) no. 1, pp. 32-38. http://geodesic.mathdoc.fr/item/PA_2012_1_1_a3/
[1] Wirsing E., “Das asimtotische Verhalten von Summen uber multiplikative Funktionen. II”, Acta Math. Sci. Hung., 18 (1967), 411–467 | DOI | MR | Zbl
[2] Shirokov B. M., “Tauberovy teoremy i ikh primenenie k summam multiplikativnykh funktsii”, Mezhvuz. sb. Analiticheskaya teoriya chisel, 1988, 95–104, Izd-vo PetrGU, Petrozavodsk
[3] Levin B. V., Fainleib A. S., “Multiplikativnye funktsii i veroyatnostnaya teoriya chisel”, Izvestiya AN SSSR. Seriya Matematika, 34:5, 1064–1109 | MR | Zbl
[4] Seneta E., Pravilno menyayuschiesya funktsii, Nauka, M., 1985 | MR | Zbl