The Tauberian theorems for the slowly variating with residual functions and their applications
Problemy analiza, Tome 1 (2012) no. 1, pp. 32-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

E. Wirsing setted up a problem in 1967 year: Is it possible to reduce the estimation $\sum\limits_{n\le x}f(n)=o\left(\frac {x}{\log x}\sum\limits_{n\le x}\frac{f(n)}{n}\right), x\to \infty(1)$ from the estimation $\sum\limits_{p\le x}\frac {f(p)\log p}{p}=o(\log x),x\to \infty(2)$. Here $n$ is a positive enteger, $p$ is a prime number. Let us denote the right-side sum in formula (2) by $m(x)$. B. V. Levin and A. S. Finelabe had proved that the statement (2) did not emply the statement (1). The function $f(n)$ of their conterexample is such that $m(x)$ is bounded. But if $m(x)$ is not bounded that Wirsing problem is opened. Two the Tauberian theorems is proved in this paper and it is established that if $m(x)$ is not bounded that the condition (2) is equivalent that $m(e^{t})$ is slowly variating with the residual.
@article{PA_2012_1_1_a3,
     author = {B. M. Shirokow},
     title = {The {Tauberian} theorems for the slowly variating with residual functions and their applications},
     journal = {Problemy analiza},
     pages = {32--38},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PA_2012_1_1_a3/}
}
TY  - JOUR
AU  - B. M. Shirokow
TI  - The Tauberian theorems for the slowly variating with residual functions and their applications
JO  - Problemy analiza
PY  - 2012
SP  - 32
EP  - 38
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2012_1_1_a3/
LA  - ru
ID  - PA_2012_1_1_a3
ER  - 
%0 Journal Article
%A B. M. Shirokow
%T The Tauberian theorems for the slowly variating with residual functions and their applications
%J Problemy analiza
%D 2012
%P 32-38
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2012_1_1_a3/
%G ru
%F PA_2012_1_1_a3
B. M. Shirokow. The Tauberian theorems for the slowly variating with residual functions and their applications. Problemy analiza, Tome 1 (2012) no. 1, pp. 32-38. http://geodesic.mathdoc.fr/item/PA_2012_1_1_a3/

[1] Wirsing E., “Das asimtotische Verhalten von Summen uber multiplikative Funktionen. II”, Acta Math. Sci. Hung., 18 (1967), 411–467 | DOI | MR | Zbl

[2] Shirokov B. M., “Tauberovy teoremy i ikh primenenie k summam multiplikativnykh funktsii”, Mezhvuz. sb. Analiticheskaya teoriya chisel, 1988, 95–104, Izd-vo PetrGU, Petrozavodsk

[3] Levin B. V., Fainleib A. S., “Multiplikativnye funktsii i veroyatnostnaya teoriya chisel”, Izvestiya AN SSSR. Seriya Matematika, 34:5, 1064–1109 | MR | Zbl

[4] Seneta E., Pravilno menyayuschiesya funktsii, Nauka, M., 1985 | MR | Zbl