Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2011_18_a3, author = {N. Yu. Svetova}, title = {{\CYRO} {\cyrh}{\cyra}{\cyru}{\cyrs}{\cyrd}{\cyro}{\cyrr}{\cyrf}{\cyro}{\cyrv}{\cyro}{\cyrishrt} {\cyrm}{\cyre}{\cyrr}{\cyre} {\cyro}{\cyrd}{\cyrn}{\cyro}{\cyrr}{\cyro}{\cyrd}{\cyrn}{\cyro}{\cyrg}{\cyro} {\cyrt}{\cyrr}{\cyre}{\cyru}{\cyrg}{\cyro}{\cyrl}{\cyrsftsn}{\cyrn}{\cyro}{\cyrg}{\cyro} $(c,\theta)$-{\cyrk}{\cyro}{\cyrv}{\cyrr}{\cyra} {{\CYRS}{\cyre}{\cyrr}{\cyrp}{\cyri}{\cyrn}{\cyrs}{\cyrk}{\cyro}{\cyrg}{\cyro}}}, journal = {Problemy analiza}, pages = {61--69}, publisher = {mathdoc}, number = {18}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PA_2011_18_a3/} }
N. Yu. Svetova. О хаусдорфовой мере однородного треугольного $(c,\theta)$-ковра Серпинского. Problemy analiza, no. 18 (2011), pp. 61-69. http://geodesic.mathdoc.fr/item/PA_2011_18_a3/
[1] Ayer E., Strichartz R. S., “Exact Hausdorff measure and intervals of maximum density for Cantor sets”, Transactions of the American Mathematical Society, 351:9 (1999), 3725–3741 | DOI | MR | Zbl
[2] Falconer K. J., Fractal geometry. Mathematical Foundations and Applications, John Wiley Sons, New York, 1990, 337 pp. | MR | Zbl
[3] Huojun R., Weiyi S., “An approximation method to estimate the Hausdorff measure of the Sierpinski gasket”, Analysis in Theory and Applications, 20:2 (2004), 158–166 | DOI | MR | Zbl
[4] Jia B., Zhou Z., Zhu Z., “Hausdorff measure of the Sierpinski gasket”, Analysis in Theory and Applications, 22:1 (2006), 8–19 | DOI | MR
[5] Jia B., “Bounds of Hausdorff measure of the Sierpinski gasket”, Journal of Mathematical Analysis and Applications, 330:2 (2007), 1016–1024 | DOI | MR | Zbl
[6] Kreitmeier W., “Hausdorff measure of uniform self-similar fractals”, Analysis in Theory and Applications, 26:1 (2010), 84–100 | DOI | MR | Zbl
[7] Liu D., Dai M., “The Hausdorff measure of the attractor of an iterated function system with parameter”, International Journal of Nonlinear Science, 3:2 (2007), 150–154 | MR
[8] Mora P., “Estimate of the hausdorff measure of the Sierpinski triangle”, Fractals, 2009, no. 2, 137–148 | DOI | MR
[9] Xu S., Su W., Zhou Z., “On the exact Hausdorff measure of a class of self-similar sets satisfying open set condition”, Analysis in Theory and Applications, 24:1 (2008), 93–100 | DOI | MR | Zbl
[10] Zuoling Z., “Hausdorff measure of Sierpinski gasket”, Science in China (Series A), 40:10 (1997), 1016–1021 | DOI | MR | Zbl