Rezolventa Linearne Diferencijalne Jednačine
Nastava matematike, LIV (2009) no. 4, p. 20

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $\dot{x}=A(t)x$ be a homogeneous linear differential equation, where $A(t)$ is a continuous operator-valued function defined on an interval $T$, taking values in the space $L(R^{n};R^{n})$. The resolvent of this equation is the operator-valued function $R(t,\tau)$, defined on the square $T\times T$, satisfying conditions $ R_{t}(t,au)=A(t)\circ R(t,au),\quad R(au,au)=I, $ where $I\in L(R^{n};R^{n})$ is the identity operator. A connection between the resolvent and the Cauchy function is deduced. In particular, the resolvent is used for finding partial derivatives of the Cauchy function.
Classification : 1AMS97I70 2ZDMI75
Keywords: Differential equation, Reslovent, Cauchy function.
@article{NM_2009_LIV_4_a4,
     author = {Vladimir Jankovi\'c},
     title = {Rezolventa {Linearne} {Diferencijalne} {Jedna\v{c}ine}},
     journal = {Nastava matematike},
     pages = {20 },
     publisher = {mathdoc},
     volume = {LIV},
     number = {4},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/NM_2009_LIV_4_a4/}
}
TY  - JOUR
AU  - Vladimir Janković
TI  - Rezolventa Linearne Diferencijalne Jednačine
JO  - Nastava matematike
PY  - 2009
SP  - 20 
VL  - LIV
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NM_2009_LIV_4_a4/
LA  - en
ID  - NM_2009_LIV_4_a4
ER  - 
%0 Journal Article
%A Vladimir Janković
%T Rezolventa Linearne Diferencijalne Jednačine
%J Nastava matematike
%D 2009
%P 20 
%V LIV
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NM_2009_LIV_4_a4/
%G en
%F NM_2009_LIV_4_a4
Vladimir Janković. Rezolventa Linearne Diferencijalne Jednačine. Nastava matematike, LIV (2009) no. 4, p. 20 . http://geodesic.mathdoc.fr/item/NM_2009_LIV_4_a4/