Rezolventa Linearne Diferencijalne Jednačine
Nastava matematike, LIV (2009) no. 4, p. 20 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $\dot{x}=A(t)x$ be a homogeneous linear differential equation, where $A(t)$ is a continuous operator-valued function defined on an interval $T$, taking values in the space $L(R^{n};R^{n})$. The resolvent of this equation is the operator-valued function $R(t,\tau)$, defined on the square $T\times T$, satisfying conditions $ R_{t}(t,au)=A(t)\circ R(t,au),\quad R(au,au)=I, $ where $I\in L(R^{n};R^{n})$ is the identity operator. A connection between the resolvent and the Cauchy function is deduced. In particular, the resolvent is used for finding partial derivatives of the Cauchy function.
Classification : 1AMS97I70 2ZDMI75
Keywords: Differential equation, Reslovent, Cauchy function.
@article{NM_2009_LIV_4_a4,
     author = {Vladimir Jankovi\'c},
     title = {Rezolventa {Linearne} {Diferencijalne} {Jedna\v{c}ine}},
     journal = {Nastava matematike},
     pages = {20 },
     publisher = {mathdoc},
     volume = {LIV},
     number = {4},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/NM_2009_LIV_4_a4/}
}
TY  - JOUR
AU  - Vladimir Janković
TI  - Rezolventa Linearne Diferencijalne Jednačine
JO  - Nastava matematike
PY  - 2009
SP  - 20 
VL  - LIV
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NM_2009_LIV_4_a4/
LA  - en
ID  - NM_2009_LIV_4_a4
ER  - 
%0 Journal Article
%A Vladimir Janković
%T Rezolventa Linearne Diferencijalne Jednačine
%J Nastava matematike
%D 2009
%P 20 
%V LIV
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NM_2009_LIV_4_a4/
%G en
%F NM_2009_LIV_4_a4
Vladimir Janković. Rezolventa Linearne Diferencijalne Jednačine. Nastava matematike, LIV (2009) no. 4, p. 20 . http://geodesic.mathdoc.fr/item/NM_2009_LIV_4_a4/