Rezolventa Linearne Diferencijalne Jednačine
Nastava matematike, LIV (2009) no. 4, p. 20
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $\dot{x}=A(t)x$ be a homogeneous linear differential equation, where $A(t)$
is a continuous operator-valued function defined on an interval $T$, taking values in the space
$L(R^{n};R^{n})$. The resolvent of this equation is the operator-valued function $R(t,\tau)$, defined on the square $T\times T$,
satisfying conditions
$ R_{t}(t,au)=A(t)\circ R(t,au),\quad R(au,au)=I, $
where $I\in L(R^{n};R^{n})$ is the identity operator. A connection between the resolvent and the Cauchy function is deduced.
In particular, the resolvent is used for finding partial derivatives of the Cauchy function.
Classification :
1AMS97I70 2ZDMI75
Keywords: Differential equation, Reslovent, Cauchy function.
Keywords: Differential equation, Reslovent, Cauchy function.
@article{NM_2009_LIV_4_a4,
author = {Vladimir Jankovi\'c},
title = {Rezolventa {Linearne} {Diferencijalne} {Jedna\v{c}ine}},
journal = {Nastava matematike},
pages = {20 },
year = {2009},
volume = {LIV},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/NM_2009_LIV_4_a4/}
}
Vladimir Janković. Rezolventa Linearne Diferencijalne Jednačine. Nastava matematike, LIV (2009) no. 4, p. 20 . http://geodesic.mathdoc.fr/item/NM_2009_LIV_4_a4/