Postoji beskonačno mnogo prostih brojeva - Eukildova teorema
Nastava matematike, LII (2007) no. 4, p. 1
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper famous Euclidean theorem which is mentioned in the title is considered.
Also, numerous proofs of this theorem and its modifications are presented. These modifications were given by famous mathematicians
like Kummer, Stieltjes, Fermat, Sylvester, Legendre, Dirichlet, Bertrand and Euler. Proofs are various and they use number theory,
analysis, algebra, combinatorics and topology. Indeed, this paper is a complete overview of all relevant fact connected with
Euclidean theorem that the set of all prime numbers is infinite and his proof of this theorem.
Classification :
00A35 F65
Keywords: Primes, factorization, Euclid's theorem, Fermat's numbers, Dirichlet's theorem, Euler's product, Mersenne's prime numbers, Euler's $f$-function, combinatorial proof, topological proof.
Keywords: Primes, factorization, Euclid's theorem, Fermat's numbers, Dirichlet's theorem, Euler's product, Mersenne's prime numbers, Euler's $f$-function, combinatorial proof, topological proof.
@article{NM_2007_LII_4_a0,
author = {\v{S}efket Arslanagi\'c and Valter Janus},
title = {Postoji beskona\v{c}no mnogo prostih brojeva - {Eukildova} teorema},
journal = {Nastava matematike},
pages = {1 },
year = {2007},
volume = {LII},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/NM_2007_LII_4_a0/}
}
Šefket Arslanagić; Valter Janus. Postoji beskonačno mnogo prostih brojeva - Eukildova teorema. Nastava matematike, LII (2007) no. 4, p. 1 . http://geodesic.mathdoc.fr/item/NM_2007_LII_4_a0/