Postoji beskonačno mnogo prostih brojeva - Eukildova teorema
Nastava matematike, LII (2007) no. 4, p. 1 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper famous Euclidean theorem which is mentioned in the title is considered. Also, numerous proofs of this theorem and its modifications are presented. These modifications were given by famous mathematicians like Kummer, Stieltjes, Fermat, Sylvester, Legendre, Dirichlet, Bertrand and Euler. Proofs are various and they use number theory, analysis, algebra, combinatorics and topology. Indeed, this paper is a complete overview of all relevant fact connected with Euclidean theorem that the set of all prime numbers is infinite and his proof of this theorem.
Classification : 00A35 F65
Keywords: Primes, factorization, Euclid's theorem, Fermat's numbers, Dirichlet's theorem, Euler's product, Mersenne's prime numbers, Euler's $f$-function, combinatorial proof, topological proof.
@article{NM_2007_LII_4_a0,
     author = {\v{S}efket Arslanagi\'c and Valter Janus},
     title = {Postoji beskona\v{c}no mnogo prostih brojeva - {Eukildova} teorema},
     journal = {Nastava matematike},
     pages = {1 },
     publisher = {mathdoc},
     volume = {LII},
     number = {4},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/NM_2007_LII_4_a0/}
}
TY  - JOUR
AU  - Šefket Arslanagić
AU  - Valter Janus
TI  - Postoji beskonačno mnogo prostih brojeva - Eukildova teorema
JO  - Nastava matematike
PY  - 2007
SP  - 1 
VL  - LII
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NM_2007_LII_4_a0/
LA  - en
ID  - NM_2007_LII_4_a0
ER  - 
%0 Journal Article
%A Šefket Arslanagić
%A Valter Janus
%T Postoji beskonačno mnogo prostih brojeva - Eukildova teorema
%J Nastava matematike
%D 2007
%P 1 
%V LII
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NM_2007_LII_4_a0/
%G en
%F NM_2007_LII_4_a0
Šefket Arslanagić; Valter Janus. Postoji beskonačno mnogo prostih brojeva - Eukildova teorema. Nastava matematike, LII (2007) no. 4, p. 1 . http://geodesic.mathdoc.fr/item/NM_2007_LII_4_a0/