Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2025_21_1_a7, author = {E. E. Chilina}, title = {On the {Centralizer} and {Conjugacy} of {Pseudo-Anosov} {Homeomorphisms}}, journal = {Russian journal of nonlinear dynamics}, pages = {103--116}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2025}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2025_21_1_a7/} }
E. E. Chilina. On the Centralizer and Conjugacy of Pseudo-Anosov Homeomorphisms. Russian journal of nonlinear dynamics, Tome 21 (2025) no. 1, pp. 103-116. http://geodesic.mathdoc.fr/item/ND_2025_21_1_a7/
[1] Grines, V. Z., Pochinka, O. V., and Chilina, E. E., “On Homeomorphisms of Three-Dimensional Manifolds with Pseudo-Anosov Attractors and Repellers”, Regul. Chaotic Dyn., 29:1 (2024), 156–173 | DOI | MR
[2] Grines, V., Pochinka, O., Medvedev, V., and Levchenko, Yu., “The Topological Classification of Structural Stable $3$-Diffeomorphisms with Two-Dimensional Basic Sets”, Nonlinearity, 28:11 (2015), 4081–4102 | DOI | MR
[3] Gogolev, A., Kalinin, B., and Sadovskaya, V., “Center Foliation Rigidity for Partially Hyperbolic Toral Diffeomorphisms”, Math. Ann., 387:3–4 (2023), 1579–1602 | DOI | MR
[4] Spatzier, R. and Vinhage, K., “Cartan Actions of Higher Rank Abelian Groups and Their Classification”, J. Amer. Math. Soc., 37:3 (2024), 731–859 | DOI | MR
[5] Tr. Mat. Inst. Steklova, 278 (2012), 102–113 (Russian) | DOI | MR
[6] Uspekhi Mat. Nauk, 57:6(348) (2002), 123–166 (Russian) | DOI | DOI | MR
[7] Smale, S., “Differentiable Dynamical Systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | DOI | MR
[8] Kopell, N., “Commuting Diffeomorphisms”, Global Analysis: Proc. Sympos. Pure Math. (Berkeley, Calif., 1968): Vol. 14, AMS, Providence, R.I., 1970, 165–184 | DOI | MR
[9] Palis, J. and Yoccoz, J.-C., “Rigidity of Centralizers of Diffeomorphisms”, Ann. Sci. École Norm. Sup. (4), 22:1 (1989), 81–98 | DOI | MR
[10] Bonatti, Ch., Crovisier, S., Vago, G. M., and Wilkinson, A., “Local Density of Diffeomorphisms with Large Centralizers”, Ann. Sci. École Norm. Sup. (4), 41:6 (2008), 925–954 | DOI | MR
[11] Damjanović, D., Wilkinson, A., and Xu, D., “Transitive Centralizer and Fibered Partially Hyperbolic Systems”, Int. Math. Res. Not. IMRN, 2024:12 (2024), 9686–9704 | DOI | MR
[12] Uspekhi Mat. Nauk, 53:6(324) (1998), 259–260 | DOI | DOI | MR
[13] McCarthy, J. D., Normalizers and Centralizers of Pseudo-Anosov Mapping Classes, Preprint MI 48824-1027, Michigan State University, East Lansing, Mich., 1982, 4 pp.
[14] Zhirov, A. Yu., Topological Conjugacy of Pseudo-Anosov Homeomorphisms, MTsNMO, Moscow, 2013, 368 pp. (Russian)
[15] Fathi, A., Laudenbach, F., and Poénaru, V., Thurston's Work on Surfaces, transl. from the 1979 French original by D. M. Kim, D. Margalit, Math. Notes, 48, Princeton Univ. Press, Princeton, N.J., 2012, xvi, 254 pp. | MR
[16] Masur, H. and Smillie, J., “Quadratic Differentials with Prescribed Singularities and Pseudo-Anosov Diffeomorphisms”, Comment. Math. Helv., 68:2 (1993), 289–307 | DOI | MR
[17] Hang, H., “Homology and Orientation Reversing Periodic Maps on Surfaces”, Topology Appl., 229 (2017), 1–19 | DOI | MR
[18] Marzantowicz, W. and Zhao, X., “Homotopical Theory of Periodic Points of Periodic Homeomorphisms on Closed Surfaces”, Topology Appl., 156:15 (2009), 2527–2536 | DOI | MR
[19] Bleiler, S. A., “The Nielsen – Thurston Theory of Surface Automorphisms”, Combinatorial Group Theory and Topology (Alta, Utah, 1984), Ann. of Math. Stud., 111, eds. S. M. Gersten, J. R. Stallings, Princeton Univ. Press, Princeton, N.J., 1987, 397–413 | MR