Existence of Attractors of Foliations, Pseudogroups and Groups of Transformations
Russian journal of nonlinear dynamics, Tome 21 (2025) no. 1, pp. 85-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, by a dynamical system we mean a pair $(S, \,X)$, where $S$ is either a pseudogroup of local diffeomorphisms, or a transformation group, or a smooth foliation of the manifold $X$. The groups of transformations can be both discrete and nondiscrete. We define the concepts of attractor and global attractor of the dynamical system $(S, \,X)$ and investigate the properties of attractors and the problem of the existence of attractors of dynamical systems $(S, \,X)$. Compactness of attractors and ambient manifolds is not assumed. A property of the dynamical system is called transverse if it can be expressed in terms of the orbit space or the leaf space (in the case of foliations). It is shown that the existence of an attractor of a dynamical system is a transverse property. This property is applied by us in proving two subsequent criteria for the existence of an attractor (and global attractor): for foliations of codimension $q$ on an $n$-dimensional manifold, $0 q n$, and for foliations covered by fibrations. A criterion for the existence of an attractor that is a minimal set for an arbitrary dynamical system is also proven. Various examples of both regular attractors and attractors of transformation groups that are fractals are constructed.
Keywords: attractor, global attractor, global holonomy group
Mots-clés : foliation, pseudogroup
@article{ND_2025_21_1_a6,
     author = {R. A. Dedaev and N. I. Zhukova},
     title = {Existence of {Attractors} of {Foliations,} {Pseudogroups} and {Groups} of {Transformations}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {85--102},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2025_21_1_a6/}
}
TY  - JOUR
AU  - R. A. Dedaev
AU  - N. I. Zhukova
TI  - Existence of Attractors of Foliations, Pseudogroups and Groups of Transformations
JO  - Russian journal of nonlinear dynamics
PY  - 2025
SP  - 85
EP  - 102
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2025_21_1_a6/
LA  - en
ID  - ND_2025_21_1_a6
ER  - 
%0 Journal Article
%A R. A. Dedaev
%A N. I. Zhukova
%T Existence of Attractors of Foliations, Pseudogroups and Groups of Transformations
%J Russian journal of nonlinear dynamics
%D 2025
%P 85-102
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2025_21_1_a6/
%G en
%F ND_2025_21_1_a6
R. A. Dedaev; N. I. Zhukova. Existence of Attractors of Foliations, Pseudogroups and Groups of Transformations. Russian journal of nonlinear dynamics, Tome 21 (2025) no. 1, pp. 85-102. http://geodesic.mathdoc.fr/item/ND_2025_21_1_a6/

[1] Apanasov, B. N., Conformal Geometry of Discrete Groups and Manifolds, De Gruyter Exp. Math., 32, de Gruyter, Berlin, 2000, xiv, 523 pp. | MR

[2] Spanier, E. H., Algebraic Topology, corr. 3rd ed., Springer, New York, 1994, 562 pp. | MR

[3] Tamura, I., Topology of Foliations: An Introduction, Transl. Math. Monogr., 97, AMS, Providence, R.I., 1992, xii, 193 pp. | MR

[4] Anosov, D. V., “Minimal Set”, Mathematical Encyclopedia: Vol. 3, Sovetskaya Entsiklopediya, Moscow, 1982, 690–691 (Russian)

[5] Kapovich, M., “Kleinian Groups in Higher Dimensions”, Geometry and Dynamics of Groups and Spaces, Progr. Math., 265, eds. M. Kapranov, S. Kolyada, Yu. I. Manin, P. Moree, L. Potyagailo, Birkhäuser, Basel, 2008, 487–564 | DOI

[6] Salem, E., “Riemannian Foliations and Pseudogroups of Isometries”, Riemannian Foliations, by P. Molino, Progr. Math., 73, Birkhäuser, Boston, Mass., 1988, 265–296, xii, 339 pp. | MR

[7] Mat. Sb. (N. S.), 89(131):2(10) (1972), 280–296, 356 (Russian) | DOI | MR

[8] Bourdon, M., “Sur la dimension de Hausdorff de l'ensemble limite d'une famille de sous-groupes convexes co-compacts”, C. R. Acad. Sci. Paris Sér. 1 Math., 325:10 (1997), 1097–1100 | DOI | MR

[9] Ferrand, J., “The Action of Conformal Transformations on a Riemannian Manifold”, Math. Ann., 304:2 (1996), 277–291 | DOI | MR

[10] Milnor, J., “On the Concept of Attractor”, Commun. Math. Phys., 99:2 (1985), 177–195 | DOI | MR

[11] Tr. Mat. Inst. Steklova, 256 (2007), 115–147 (Russian) | DOI | MR

[12] Mat. Sb., 203:3 (2012), 79–106 (Russian) | DOI | DOI | MR

[13] Problemy Matem. Analiza, 2015, no. 79, 105–118 (Russian) | DOI | MR

[14] Zhukova, N. I., “On Existence of Global Attractors of Foliations with Transverse Linear Connections”, Differential Geom. Appl., 74 (2021), Paper No. 101699, 23 pp. | DOI | MR