Links and Dynamics
Russian journal of nonlinear dynamics, Tome 21 (2025) no. 1, pp. 69-83

Voir la notice de l'article provenant de la source Math-Net.Ru

Knots naturally appear in continuous dynamical systems as flow periodic trajectories. However, discrete dynamical systems are also closely connected with the theory of knots and links. For example, for Pixton diffeomorphisms, the equivalence class of the Hopf knot, which is the orbit space of the unstable saddle separatrix in the manifold $\mathbb{S}^2\times \mathbb{S}^1$, is a complete invariant of the topological conjugacy of the system. In this paper we distinguish a class of three-dimensional Morse – Smale diffeomorphisms for which the complete invariant of topological conjugacy is the equivalence class of a link in $\mathbb{S}^2\times \mathbb{S}^1$. We prove that, if $M$ is a link complement in $\mathbb{S}^3$, or a handlebody $H_g^{}$ of genus $g\geqslant 0$, or a closed, connected, orientable 3-manifold, then the set of equivalence classes of tame links in $M$ is countable. As a corollary, we prove that there exists a countable number of equivalence classes of tame links in $\mathbb{S}^2\times \mathbb{S}^1$. It is proved that any essential link can be realized by a diffeomorphism of the class under consideration.
Keywords: knot, link, equivalence class of links, braid, mixed braid, fundamental quandle, handlebody, $3$-manifold
@article{ND_2025_21_1_a5,
     author = {V. G. Bardakov and T. A. Kozlovskaya and O. V. Pochinka},
     title = {Links and {Dynamics}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {69--83},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2025_21_1_a5/}
}
TY  - JOUR
AU  - V. G. Bardakov
AU  - T. A. Kozlovskaya
AU  - O. V. Pochinka
TI  - Links and Dynamics
JO  - Russian journal of nonlinear dynamics
PY  - 2025
SP  - 69
EP  - 83
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2025_21_1_a5/
LA  - en
ID  - ND_2025_21_1_a5
ER  - 
%0 Journal Article
%A V. G. Bardakov
%A T. A. Kozlovskaya
%A O. V. Pochinka
%T Links and Dynamics
%J Russian journal of nonlinear dynamics
%D 2025
%P 69-83
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2025_21_1_a5/
%G en
%F ND_2025_21_1_a5
V. G. Bardakov; T. A. Kozlovskaya; O. V. Pochinka. Links and Dynamics. Russian journal of nonlinear dynamics, Tome 21 (2025) no. 1, pp. 69-83. http://geodesic.mathdoc.fr/item/ND_2025_21_1_a5/