Links and Dynamics
Russian journal of nonlinear dynamics, Tome 21 (2025) no. 1, pp. 69-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

Knots naturally appear in continuous dynamical systems as flow periodic trajectories. However, discrete dynamical systems are also closely connected with the theory of knots and links. For example, for Pixton diffeomorphisms, the equivalence class of the Hopf knot, which is the orbit space of the unstable saddle separatrix in the manifold $\mathbb{S}^2\times \mathbb{S}^1$, is a complete invariant of the topological conjugacy of the system. In this paper we distinguish a class of three-dimensional Morse – Smale diffeomorphisms for which the complete invariant of topological conjugacy is the equivalence class of a link in $\mathbb{S}^2\times \mathbb{S}^1$. We prove that, if $M$ is a link complement in $\mathbb{S}^3$, or a handlebody $H_g^{}$ of genus $g\geqslant 0$, or a closed, connected, orientable 3-manifold, then the set of equivalence classes of tame links in $M$ is countable. As a corollary, we prove that there exists a countable number of equivalence classes of tame links in $\mathbb{S}^2\times \mathbb{S}^1$. It is proved that any essential link can be realized by a diffeomorphism of the class under consideration.
Keywords: knot, link, equivalence class of links, braid, mixed braid, fundamental quandle, handlebody, $3$-manifold
@article{ND_2025_21_1_a5,
     author = {V. G. Bardakov and T. A. Kozlovskaya and O. V. Pochinka},
     title = {Links and {Dynamics}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {69--83},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2025_21_1_a5/}
}
TY  - JOUR
AU  - V. G. Bardakov
AU  - T. A. Kozlovskaya
AU  - O. V. Pochinka
TI  - Links and Dynamics
JO  - Russian journal of nonlinear dynamics
PY  - 2025
SP  - 69
EP  - 83
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2025_21_1_a5/
LA  - en
ID  - ND_2025_21_1_a5
ER  - 
%0 Journal Article
%A V. G. Bardakov
%A T. A. Kozlovskaya
%A O. V. Pochinka
%T Links and Dynamics
%J Russian journal of nonlinear dynamics
%D 2025
%P 69-83
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2025_21_1_a5/
%G en
%F ND_2025_21_1_a5
V. G. Bardakov; T. A. Kozlovskaya; O. V. Pochinka. Links and Dynamics. Russian journal of nonlinear dynamics, Tome 21 (2025) no. 1, pp. 69-83. http://geodesic.mathdoc.fr/item/ND_2025_21_1_a5/

[1] Akhmet'ev, P. M., Medvedev, T. V., and Pochinka, O. V., “On the Number of the Classes of Topological Conjugacy of Pixton Diffeomorphisms”, Qual. Theory Dyn. Syst., 20:3 (2021), Paper No. 76, 15 pp. | MR

[2] Bardakov, V. G., “Braid Groups in Handlebodies and Corresponding Hecke Algebras”, Algebraic Modeling of Topological and Computational Structures and Applications, Springer Proc. Math. Stat., 219, eds. S. Lambropoulou, D. Theodorou, P. Stefaneas, L. H. Kauffman, Springer, Cham, 2017, 189–203 | MR

[3] Bardakov, V. G. and Kawauchi, A., “Spatial Graph As Connected Sum of a Planar Graph and a Braid”, J. Knot Theory Ramifications, 30:11 (2021), Paper No. 2150077, 15 pp. | DOI | MR

[4] Birman, J. S., Braids, Links, and Mapping Class Groups, Ann. Math. Stud., 82, Princeton Univ. Press, Princeton, N.J., 1974, ix, 228 pp. | MR

[5] Crowell, R. H. and Fox, R. H., Introduction to Knot Theory, based upon lectures given at Haverford College under the Philips Lecture Program, Ginn Co., Boston, Mass., 1963, x, 182 pp. | MR

[6] Davis, Ch. W., Nagel, M., Park, J., and Ray, A., “Concordance of Knots in $S^1 \times S^2$”, J. Lond. Math. Soc. (2), 98:1 (2018), 59–84 | DOI | MR

[7] Häring-Oldenburg, R. and Lambropoulou, S., “Knot Theory in Handlebodies”, J. Knot Theory Ramifications, 11:6 (2002), 921–943 | DOI | MR

[8] Joyce, D., “A Classifying Invariant of Knots, the Knot Quandle”, J. Pure Appl. Algebra, 23:1 (1982), 37–65 | DOI | MR

[9] Kassel, Ch. and Turaev, V., Braid Groups, with the graphical assistance of Olivier Dodane, Grad. Texts in Math., 247, Springer, New York, 2008, xii, 340 pp. | DOI | MR

[10] Kassel, Ch., Quantum Groups, Grad. Texts in Math., 155, Springer, New York, 1995, xii, 531 pp. | DOI | MR

[11] Kauffman, L. H., “Invariants of Graphs in Three-Space”, Trans. Amer. Math. Soc., 311:2 (1989), 697–710 | DOI | MR

[12] Kawauchi, A., A Survey of Knot Theory, transl. and rev. from the 1990 Japanese original by the author, Birkhäuser, Basel, 1996, xxii, 420 pp. | MR

[13] Lambropoulou, S., “Braid Structures in Knot Complements, Handlebodies and $3$-Manifolds”, Knots in Hellas'98: Proc. of the Internat. Conf. on Knot Theory and Its Ramifications (Delphi, Aug 1998), Ser. Knots Everything, 24, eds. C. McA. Gordon, V. F. R. Jones, L. H. Kauffman, S. Lambropoulou, J. H. Przytycki, World Sci., River Edge, N.J., 2000, 274–289, x, 568 pp. | MR

[14] Lambropoulou, S. and Rourke, C. P., “Markov's Theorem in $3$-Manifolds”, Topology Appl., 78:1–2 (1997), 95–122 | DOI | MR

[15] Lambropoulou, S. and Rourke, C. P., “Algebraic Markov Equivalence for Links in Three-Manifolds”, Compos. Math., 142:4 (2006), 1039–1062 | DOI | MR

[16] Lickorish, W. B. R., “A Representation of Orientable Combinatorial $3$-Manifolds”, Ann. of Math. (2), 76 (1962), 531–540 | DOI | MR

[17] Mat. Sb. (N.S.), 119(161):1(9) (1982), 78–88, 160 (Russian) | DOI | MR

[18] Yetter, D. N., “Category Theoretic Representations of Knotted Graphs in $S^3$”, Adv. Math., 77:2 (1989), 137–155 | DOI | MR

[19] Bonatti, C., Grines, V., and Pochinka, O., “Topological Classification of Morse – Smale Diffeomorphisms on $3$-Manifolds”, Duke Math. J., 168:13 (2019), 2507–2558 | DOI | MR

[20] Bonatti, Ch. and Grines, V., “Knots As Topological Invariants for Gradient-Like Diffeomorphisms of the Sphere $S^3$”, J. Dynam. Control Systems, 6:4 (2000), 579–602 | DOI | MR

[21] Mat. Sb., 214:8 (2023), 94–107 (Russian) | DOI | DOI | MR

[22] Tr. Mat. Inst. Steklova, 271 (2010), 111–133 | DOI | MR

[23] Grines, V., Medvedev, T., and Pochinka, O., Dynamical Systems on $2$- and $3$-Manifolds, Dev. Math., 46, Springer, New York, 2016, xxvi, 295 pp. | MR

[24] Smale, S., “Differentiable Dynamical Systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | DOI | MR

[25] Uspekhi Mat. Nauk, 74:1(445) (2019), 41–116 (Russian) | DOI | DOI | MR

[26] Rolfsen, D., Knots and Links, AMS Chelsea Publ. Ser., 346, AMS Chelsea, Providence, R.I., 2003, xiv, 439 pp. | MR

[27] Wallace, A. H., “Modifications and Cobounding Manifolds”, Canadian J. Math., 12 (1960), 503–528 | DOI | MR