Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2025_21_1_a4, author = {S. D. Glyzin and S. A. Kashchenko and D. S. Kosterin}, title = {Dynamical {Properties} of {Periodic} {Solutions} of {Integro-Differential} {Equations}}, journal = {Russian journal of nonlinear dynamics}, pages = {49--67}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2025}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2025_21_1_a4/} }
TY - JOUR AU - S. D. Glyzin AU - S. A. Kashchenko AU - D. S. Kosterin TI - Dynamical Properties of Periodic Solutions of Integro-Differential Equations JO - Russian journal of nonlinear dynamics PY - 2025 SP - 49 EP - 67 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2025_21_1_a4/ LA - en ID - ND_2025_21_1_a4 ER -
%0 Journal Article %A S. D. Glyzin %A S. A. Kashchenko %A D. S. Kosterin %T Dynamical Properties of Periodic Solutions of Integro-Differential Equations %J Russian journal of nonlinear dynamics %D 2025 %P 49-67 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2025_21_1_a4/ %G en %F ND_2025_21_1_a4
S. D. Glyzin; S. A. Kashchenko; D. S. Kosterin. Dynamical Properties of Periodic Solutions of Integro-Differential Equations. Russian journal of nonlinear dynamics, Tome 21 (2025) no. 1, pp. 49-67. http://geodesic.mathdoc.fr/item/ND_2025_21_1_a4/
[1] Kaschenko, S. A., “Dynamics of Full-Coupled Chains of a Great Number of Oscillators with a Large Delay in Couplings”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 31:4 (2023), 523–542 (Russian)
[2] Glyzin, D. S., Glyzin, S. D., Kolesov, A. Yu., “Hunt for Chimeras in Fully Coupled Networks of Nonlinear Oscillators”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 30:2 (2022), 152–175 (Russian) | MR
[3] Kashchenko, S. A., “Quasinormal Forms for Chains of Coupled Logistic Equations with Delay”, Mathematics, 10:15 (2022), Art. 2648, 32 pp. | DOI | MR
[4] Kashchenko, S., “Asymptotics of Regular and Irregular Solutions in Chains of Coupled van der Pol Equations”, Mathematics, 11:9 (2023), Art. 2047, 34 pp. | DOI | MR
[5] Teoret. Mat. Fiz., 212:2 (2022), 213–233 (Russian) | DOI | DOI | MR
[6] Hartman, Ph., Ordinary Differential Equations, Classics Appl. Math., 38, 2nd ed., SIAM, Philadelphia, Penn., 1987, xx, 612 pp. | MR
[7] Daleckiĭ, Ju. L. and Kreĭn, M. G., Stability of Solutions of Differential Equations in Banach Space, transl. from the Russian by S. Smith, Trans. Math. Monogr., 43, AMS, Providence, R.I., 1974, vi, 386 pp. | MR
[8] Sovrem. Mat. Fundam. Napravl., 4 (2003), 5–120 (Russian) | DOI | MR
[9] Grigorieva, E. V. and Kashchenko, S. A., “Antiphase and In-Phase Dynamics in Laser Chain Models with Delayed Bidirectional Couplings”, Phys. D, 467 (2024), Paper No. 134223, 10 pp. | DOI | MR
[10] Grigorieva, E. V. and Kashchenko, S. A., “Rectangular Structures in the Model of an Optoelectronic Oscillator with Delay”, Phys. D, 417 (2021), Paper No. 132818, 9 pp. | DOI | MR
[11] Medlock, J. and Kot, M., “Spreading Disease: Integro-Differential Equations Old and New”, Math. Biosci., 184:2 (2003), 201–222 | DOI | MR
[12] Bonnefon, O., Coville, J., Garnier, J., and Roques, L., “Inside Dynamics of Solutions of Integro-Differential Equations”, Discrete Contin. Dyn. Syst. Ser. B, 19:10 (2014), 3057–3085 | MR
[13] Jin, Y. and Zhao, X.-Q., “Spatial Dynamics of a Periodic Population Model with Dispersal”, Nonlinearity, 22:5 (2009), 1167–1189 | DOI | MR
[14] Marsden, J. E. and McCracken, M., The Hopf Bifurcation and Its Applications, with contributions by P. Chernoff, G. Childs, S. Chow, J. R. Dorroh, J. Guckenheimer, L. Howard, N. Kopell, O. Lanford, J. Mallet-Paret, G. Oster, O. Ruiz, S. Schecter, D. Schmidt and S. Smale, Appl. Math. Sci., 19, Springer, New York, 1976, xiii, 408 pp. | DOI | MR
[15] Hassard, B. D., Kazarinoff, N. D., and Wan, Y. H., Theory and Applications of Hopf Bifurcation, microfiche insert, London Math. Soc. Lect. Note Ser., 41, Cambridge Univ. Press, Cambridge, 1981, v, 311 pp. | MR
[16] Kuznetsov, Yu. A., Elements of Applied Bifurcation Theory, Appl. Math. Sci., 112, 3rd ed., Springer, New York, 2004, 631 pp. | DOI | MR
[17] Kuang, Y., Delay Differential Equations with Applications in Population Dynamics, Math. Sci. Eng., 191, Acad. Press, Boston, Mass., 1993, xii, 398 pp. | MR
[18] Henry, D. B., Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., 840, Springer, Berlin, 1981, iv, 348 pp. | DOI | MR
[19] Hale, J. K., Theory of Functional Differential Equations, Appl. Math. Sci., 3, Springer, New York, 1977, x, 366 pp. | DOI | MR
[20] Wu, J., Theory and Applications of Partial Functional-Differential Equations, Appl. Math. Sci., 119, Springer, New York, 1996, x, 429 pp. | MR
[21] Dokl. Akad. Nauk SSSR, 299:5 (1988), 1049–1052 (Russian) | MR
[22] Kaschenko, S. A., “Normalization in the Systems with Small Diffusion: Nonlinear Dynamics, Bifurcations and Chaotic Behavior”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 6:6 (1996), 1093–1109 | DOI | MR