Dynamical Properties of Periodic Solutions of Integro-Differential Equations
Russian journal of nonlinear dynamics, Tome 21 (2025) no. 1, pp. 49-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

Spatially distributed integro-differential systems of equations with periodic boundary conditions are considered. In applications, such systems arise as limiting ones for some nonlinear fully coupled ensembles. The simplest critical cases of zero and purely imaginary eigenvalues in the problem of stability of the zero equilibrium state are considered. In these two situations, quasinormal forms are constructed, for which the question of the existence of piecewise constant solutions is studied. In the case of a simple zero root, the conditions for the stability of these solutions are determined. The existence of piecewise constant solutions with more than one discontinuity point is shown. An algorithm for calculating solutions of the corresponding boundary value problem by numerical methods is presented. A numerical experiment is performed, confirming the analytical constructions.
Keywords: evolutionary spatially distributed equations, stability, cluster synchronization
Mots-clés : piecewise constant solutions
@article{ND_2025_21_1_a4,
     author = {S. D. Glyzin and S. A. Kashchenko and D. S. Kosterin},
     title = {Dynamical {Properties} of {Periodic} {Solutions} of {Integro-Differential} {Equations}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {49--67},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2025_21_1_a4/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - S. A. Kashchenko
AU  - D. S. Kosterin
TI  - Dynamical Properties of Periodic Solutions of Integro-Differential Equations
JO  - Russian journal of nonlinear dynamics
PY  - 2025
SP  - 49
EP  - 67
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2025_21_1_a4/
LA  - en
ID  - ND_2025_21_1_a4
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A S. A. Kashchenko
%A D. S. Kosterin
%T Dynamical Properties of Periodic Solutions of Integro-Differential Equations
%J Russian journal of nonlinear dynamics
%D 2025
%P 49-67
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2025_21_1_a4/
%G en
%F ND_2025_21_1_a4
S. D. Glyzin; S. A. Kashchenko; D. S. Kosterin. Dynamical Properties of Periodic Solutions of Integro-Differential Equations. Russian journal of nonlinear dynamics, Tome 21 (2025) no. 1, pp. 49-67. http://geodesic.mathdoc.fr/item/ND_2025_21_1_a4/

[1] Kaschenko, S. A., “Dynamics of Full-Coupled Chains of a Great Number of Oscillators with a Large Delay in Couplings”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 31:4 (2023), 523–542 (Russian)

[2] Glyzin, D. S., Glyzin, S. D., Kolesov, A. Yu., “Hunt for Chimeras in Fully Coupled Networks of Nonlinear Oscillators”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 30:2 (2022), 152–175 (Russian) | MR

[3] Kashchenko, S. A., “Quasinormal Forms for Chains of Coupled Logistic Equations with Delay”, Mathematics, 10:15 (2022), Art. 2648, 32 pp. | DOI | MR

[4] Kashchenko, S., “Asymptotics of Regular and Irregular Solutions in Chains of Coupled van der Pol Equations”, Mathematics, 11:9 (2023), Art. 2047, 34 pp. | DOI | MR

[5] Teoret. Mat. Fiz., 212:2 (2022), 213–233 (Russian) | DOI | DOI | MR

[6] Hartman, Ph., Ordinary Differential Equations, Classics Appl. Math., 38, 2nd ed., SIAM, Philadelphia, Penn., 1987, xx, 612 pp. | MR

[7] Daleckiĭ, Ju. L. and Kreĭn, M. G., Stability of Solutions of Differential Equations in Banach Space, transl. from the Russian by S. Smith, Trans. Math. Monogr., 43, AMS, Providence, R.I., 1974, vi, 386 pp. | MR

[8] Sovrem. Mat. Fundam. Napravl., 4 (2003), 5–120 (Russian) | DOI | MR

[9] Grigorieva, E. V. and Kashchenko, S. A., “Antiphase and In-Phase Dynamics in Laser Chain Models with Delayed Bidirectional Couplings”, Phys. D, 467 (2024), Paper No. 134223, 10 pp. | DOI | MR

[10] Grigorieva, E. V. and Kashchenko, S. A., “Rectangular Structures in the Model of an Optoelectronic Oscillator with Delay”, Phys. D, 417 (2021), Paper No. 132818, 9 pp. | DOI | MR

[11] Medlock, J. and Kot, M., “Spreading Disease: Integro-Differential Equations Old and New”, Math. Biosci., 184:2 (2003), 201–222 | DOI | MR

[12] Bonnefon, O., Coville, J., Garnier, J., and Roques, L., “Inside Dynamics of Solutions of Integro-Differential Equations”, Discrete Contin. Dyn. Syst. Ser. B, 19:10 (2014), 3057–3085 | MR

[13] Jin, Y. and Zhao, X.-Q., “Spatial Dynamics of a Periodic Population Model with Dispersal”, Nonlinearity, 22:5 (2009), 1167–1189 | DOI | MR

[14] Marsden, J. E. and McCracken, M., The Hopf Bifurcation and Its Applications, with contributions by P. Chernoff, G. Childs, S. Chow, J. R. Dorroh, J. Guckenheimer, L. Howard, N. Kopell, O. Lanford, J. Mallet-Paret, G. Oster, O. Ruiz, S. Schecter, D. Schmidt and S. Smale, Appl. Math. Sci., 19, Springer, New York, 1976, xiii, 408 pp. | DOI | MR

[15] Hassard, B. D., Kazarinoff, N. D., and Wan, Y. H., Theory and Applications of Hopf Bifurcation, microfiche insert, London Math. Soc. Lect. Note Ser., 41, Cambridge Univ. Press, Cambridge, 1981, v, 311 pp. | MR

[16] Kuznetsov, Yu. A., Elements of Applied Bifurcation Theory, Appl. Math. Sci., 112, 3rd ed., Springer, New York, 2004, 631 pp. | DOI | MR

[17] Kuang, Y., Delay Differential Equations with Applications in Population Dynamics, Math. Sci. Eng., 191, Acad. Press, Boston, Mass., 1993, xii, 398 pp. | MR

[18] Henry, D. B., Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., 840, Springer, Berlin, 1981, iv, 348 pp. | DOI | MR

[19] Hale, J. K., Theory of Functional Differential Equations, Appl. Math. Sci., 3, Springer, New York, 1977, x, 366 pp. | DOI | MR

[20] Wu, J., Theory and Applications of Partial Functional-Differential Equations, Appl. Math. Sci., 119, Springer, New York, 1996, x, 429 pp. | MR

[21] Dokl. Akad. Nauk SSSR, 299:5 (1988), 1049–1052 (Russian) | MR

[22] Kaschenko, S. A., “Normalization in the Systems with Small Diffusion: Nonlinear Dynamics, Bifurcations and Chaotic Behavior”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 6:6 (1996), 1093–1109 | DOI | MR