Quasi-Periodic Parametric Perturbations of Two-Dimensional Hamiltonian Systems: Degenerate Resonances and Synchronization
Russian journal of nonlinear dynamics, Tome 21 (2025) no. 1, pp. 33-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider nonconservative quasi-periodic perturbations of two-dimensional Hamiltonian systems with nonmonotonic rotation. The peculiarity of these systems is that degenerate resonances can take place. Special focus is on those systems for which the corresponding autonomous perturbed system has a structurally stable limit cycle. If the cycle appears in the neighborhood of a nonresonance phase curve, then it corresponds to an invariant torus in the initial system. In this regard, the problem of synchronization arises when the invariant torus passes through a resonance zone. In this paper, we distinguish a class of perturbations (the so-called parametric perturbations) under which synchronization can be violated. Also, we introduce the concept of generalized synchronization and give conditions for this type of synchronization to occur. As an example, we study a Duffing-like equation with an asymmetric potential function.
Keywords: nearly Hamiltonian system, degenerate resonance, averaging
Mots-clés : quasi-periodic perturbation
@article{ND_2025_21_1_a3,
     author = {K. E. Morozov and A. D. Morozov},
     title = {Quasi-Periodic {Parametric} {Perturbations} of {Two-Dimensional} {Hamiltonian} {Systems:} {Degenerate} {Resonances} and {Synchronization}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {33--48},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2025_21_1_a3/}
}
TY  - JOUR
AU  - K. E. Morozov
AU  - A. D. Morozov
TI  - Quasi-Periodic Parametric Perturbations of Two-Dimensional Hamiltonian Systems: Degenerate Resonances and Synchronization
JO  - Russian journal of nonlinear dynamics
PY  - 2025
SP  - 33
EP  - 48
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2025_21_1_a3/
LA  - en
ID  - ND_2025_21_1_a3
ER  - 
%0 Journal Article
%A K. E. Morozov
%A A. D. Morozov
%T Quasi-Periodic Parametric Perturbations of Two-Dimensional Hamiltonian Systems: Degenerate Resonances and Synchronization
%J Russian journal of nonlinear dynamics
%D 2025
%P 33-48
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2025_21_1_a3/
%G en
%F ND_2025_21_1_a3
K. E. Morozov; A. D. Morozov. Quasi-Periodic Parametric Perturbations of Two-Dimensional Hamiltonian Systems: Degenerate Resonances and Synchronization. Russian journal of nonlinear dynamics, Tome 21 (2025) no. 1, pp. 33-48. http://geodesic.mathdoc.fr/item/ND_2025_21_1_a3/

[1] Morozov, A. D. and Shil'nikov, L. P., “To Mathematical Theory of Oscillatory Synchronization”, Dokl. Akad. Nauk SSSR, 223:6 (1975), 1340–1343 (Russian) | MR

[2] Prikl. Mat. Mekh., 47:3 (1983), 385–394 (Russian) | DOI | MR

[3] Morozov, A. D., Quasi-Conservative Systems: Cycles, Resonances and Chaos, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 30, World Sci., River Edge, N.J., 1999, 340 pp. | MR

[4] Morozov, A. D., Resonances, Cycles and Chaos in Quasi-Conservative Systems, R Dynamics, Izhevsk, 2005, 420 pp. (Russian) | MR

[5] Morozov, A. D. and Boykova, S. A., “On the Investigation of Degenerate Resonances”, Regul. Chaotic Dyn., 4:1 (1999), 70–82 | DOI | MR

[6] Morozov, A. D., “Degenerate Resonances in Hamiltonian Systems with $3/2$ Degrees of Freedom”, Chaos, 12:3 (2002), 539–548 | DOI | MR

[7] Morozov, A. D., “On Degenerate Resonances in Nearly Hamiltonian Systems”, Regul. Chaotic Dyn., 9:3 (2004), 337–350 | DOI | MR

[8] Morozov, A. D., “On Degenerate Resonances and “Vortex Pairs””, Regul. Chaotic Dyn., 13:1 (2008), 27–36 | MR

[9] Soskin, S. M., Luchinsky, D. G., Mannella, R., Neiman, A. B., and McClintock, P. V. E., “Zero-Dispersion Nonlinear Resonance”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 7:4 (1997), 923–836 | DOI

[10] Soskin, S. M., “Nonlinear Resonance for the Oscillator with a Nonmonotonic Dependence of Eigenfrequency on Energy”, Phys. Rev. E, 50:1 (1994), R44–R46 | DOI

[11] Howard, J. E. and Humpherys, J., “Nonmonotonic Twist Maps”, Phys. D, 80:3 (1995), 256–276 | DOI | MR

[12] Petrisor, E., “Reconnection Scenarios and the Threshold of Reconnection in the Dynamics of Non-Twist Maps”, Chaos Solitons Fractals, 14:1 (2002), 117–127 | DOI | MR

[13] Fuchss, K., Wurm, A., Apte, A., and Morrison, P. J., “Breakup of Shearless Meanders and “Outer” Tori in the Standard Nontwist Map”, Chaos, 16:3 (2006), Art. 033120, 11 pp. | DOI | MR

[14] Wurm, A., Apte, A., Fuchss, K., and Morrison, P. J., “Meanders and Reconnection-Collision Sequences in the Standard Nontwist Map”, Chaos, 15:2 (2005), Art. 023108, 13 pp. | DOI | MR

[15] Apte, A., de la Llave, R., and Petrov, N. P., “Regularity of Critical Invariant Circles of the Standard Nontwist Map”, Nonlinearity, 18:3 (2005), 1173–1187 | DOI | MR

[16] Howard, J. E. and Hohs, S. M., “Stochasticity and Reconnection in Hamiltonian Systems”, Phys. Rev. A (3), 29:1 (1984), 418–421 | DOI | MR

[17] Dullin, H. R. and Meiss, J. D., “Twist Singularities for Symplectic Maps”, Chaos, 13:1 (2003), 1–16 | DOI | MR

[18] Differ. Uravn., 53:12 (2017), 1607–1615 (Russian) | DOI | DOI | MR

[19] Morozov, A. D. and Morozov, K. E., “On Quasi-Periodic Parametric Perturbations of Hamiltonian Systems”, Russian J. Nonlinear Dyn., 16:2 (2020), 369–378 | MR

[20] Morozov, A. D. and Morozov, K. E., “On Synchronization of Quasiperiodic Oscillations”, Russian J. Nonlinear Dyn., 14:3 (2018), 367–376 | MR

[21] Morozov, A. D. and Morozov, K. E., “Global Dynamics of Systems Close to Hamiltonian Ones under Nonconservative Quasi-Periodic Perturbation”, Russian J. Nonlinear Dyn., 15:2 (2019), 187–198 | MR

[22] Morozov, A. D. and Morozov, K. E., “Quasiperiodic Perturbations of Two-Dimensional Hamiltonian Systems with Nonmonotone Rotation”, J. Math. Sci. (N. Y.), 255:6 (2021), 741–752 | DOI | MR

[23] Morozov, A. D. and Morozov, K. E., “Synchronization of Quasiperiodic Oscillations in Nearly Hamiltonian Systems: The Degenerate Case”, Chaos, 31:8 (2021), Paper No. 083109, 10 pp. | DOI | MR

[24] Morozov, A. D. and Morozov, K. E., “Degenerate Resonances and Synchronization in Nearly Hamiltonian Systems under Quasi-Periodic Perturbations”, Regul. Chaotic Dyn., 27:5 (2022), 572–585 | DOI | MR

[25] Morozov, A. D. and Morozov, K. E., “Quasi-Periodic Parametric Perturbations of Two-Dimensional Hamiltonian Systems with Nonmonotonic Rotation”, Regul. Chaotic Dyn., 29:1 (2024), 65–77 | DOI | MR

[26] Bogolubov, N. N. and Mitropolskiy, Yu. A., Asymptotic Methods in the Theory of Nonlinear Oscillations, Nauka, Moscow, 1974, 503 pp. (Russian) | MR

[27] Hale, J. K., Ordinary Differential Equations, 2nd ed., R. E. Krieger, Huntington, N.Y., 1980, xvi, 361 pp. | MR

[28] Pontryagin, L. S., “On Dynamical Systems Close to Hamiltonian Systems”, Zh. Èksp. Teor. Fiz., 4:8 (1934), 234–238 (Russian)

[29] Tr. Mosk. Mat. Obs., 12 (1963), 3–52 (Russian)