Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2025_21_1_a3, author = {K. E. Morozov and A. D. Morozov}, title = {Quasi-Periodic {Parametric} {Perturbations} of {Two-Dimensional} {Hamiltonian} {Systems:} {Degenerate} {Resonances} and {Synchronization}}, journal = {Russian journal of nonlinear dynamics}, pages = {33--48}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2025}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2025_21_1_a3/} }
TY - JOUR AU - K. E. Morozov AU - A. D. Morozov TI - Quasi-Periodic Parametric Perturbations of Two-Dimensional Hamiltonian Systems: Degenerate Resonances and Synchronization JO - Russian journal of nonlinear dynamics PY - 2025 SP - 33 EP - 48 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2025_21_1_a3/ LA - en ID - ND_2025_21_1_a3 ER -
%0 Journal Article %A K. E. Morozov %A A. D. Morozov %T Quasi-Periodic Parametric Perturbations of Two-Dimensional Hamiltonian Systems: Degenerate Resonances and Synchronization %J Russian journal of nonlinear dynamics %D 2025 %P 33-48 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2025_21_1_a3/ %G en %F ND_2025_21_1_a3
K. E. Morozov; A. D. Morozov. Quasi-Periodic Parametric Perturbations of Two-Dimensional Hamiltonian Systems: Degenerate Resonances and Synchronization. Russian journal of nonlinear dynamics, Tome 21 (2025) no. 1, pp. 33-48. http://geodesic.mathdoc.fr/item/ND_2025_21_1_a3/
[1] Morozov, A. D. and Shil'nikov, L. P., “To Mathematical Theory of Oscillatory Synchronization”, Dokl. Akad. Nauk SSSR, 223:6 (1975), 1340–1343 (Russian) | MR
[2] Prikl. Mat. Mekh., 47:3 (1983), 385–394 (Russian) | DOI | MR
[3] Morozov, A. D., Quasi-Conservative Systems: Cycles, Resonances and Chaos, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 30, World Sci., River Edge, N.J., 1999, 340 pp. | MR
[4] Morozov, A. D., Resonances, Cycles and Chaos in Quasi-Conservative Systems, R Dynamics, Izhevsk, 2005, 420 pp. (Russian) | MR
[5] Morozov, A. D. and Boykova, S. A., “On the Investigation of Degenerate Resonances”, Regul. Chaotic Dyn., 4:1 (1999), 70–82 | DOI | MR
[6] Morozov, A. D., “Degenerate Resonances in Hamiltonian Systems with $3/2$ Degrees of Freedom”, Chaos, 12:3 (2002), 539–548 | DOI | MR
[7] Morozov, A. D., “On Degenerate Resonances in Nearly Hamiltonian Systems”, Regul. Chaotic Dyn., 9:3 (2004), 337–350 | DOI | MR
[8] Morozov, A. D., “On Degenerate Resonances and “Vortex Pairs””, Regul. Chaotic Dyn., 13:1 (2008), 27–36 | MR
[9] Soskin, S. M., Luchinsky, D. G., Mannella, R., Neiman, A. B., and McClintock, P. V. E., “Zero-Dispersion Nonlinear Resonance”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 7:4 (1997), 923–836 | DOI
[10] Soskin, S. M., “Nonlinear Resonance for the Oscillator with a Nonmonotonic Dependence of Eigenfrequency on Energy”, Phys. Rev. E, 50:1 (1994), R44–R46 | DOI
[11] Howard, J. E. and Humpherys, J., “Nonmonotonic Twist Maps”, Phys. D, 80:3 (1995), 256–276 | DOI | MR
[12] Petrisor, E., “Reconnection Scenarios and the Threshold of Reconnection in the Dynamics of Non-Twist Maps”, Chaos Solitons Fractals, 14:1 (2002), 117–127 | DOI | MR
[13] Fuchss, K., Wurm, A., Apte, A., and Morrison, P. J., “Breakup of Shearless Meanders and “Outer” Tori in the Standard Nontwist Map”, Chaos, 16:3 (2006), Art. 033120, 11 pp. | DOI | MR
[14] Wurm, A., Apte, A., Fuchss, K., and Morrison, P. J., “Meanders and Reconnection-Collision Sequences in the Standard Nontwist Map”, Chaos, 15:2 (2005), Art. 023108, 13 pp. | DOI | MR
[15] Apte, A., de la Llave, R., and Petrov, N. P., “Regularity of Critical Invariant Circles of the Standard Nontwist Map”, Nonlinearity, 18:3 (2005), 1173–1187 | DOI | MR
[16] Howard, J. E. and Hohs, S. M., “Stochasticity and Reconnection in Hamiltonian Systems”, Phys. Rev. A (3), 29:1 (1984), 418–421 | DOI | MR
[17] Dullin, H. R. and Meiss, J. D., “Twist Singularities for Symplectic Maps”, Chaos, 13:1 (2003), 1–16 | DOI | MR
[18] Differ. Uravn., 53:12 (2017), 1607–1615 (Russian) | DOI | DOI | MR
[19] Morozov, A. D. and Morozov, K. E., “On Quasi-Periodic Parametric Perturbations of Hamiltonian Systems”, Russian J. Nonlinear Dyn., 16:2 (2020), 369–378 | MR
[20] Morozov, A. D. and Morozov, K. E., “On Synchronization of Quasiperiodic Oscillations”, Russian J. Nonlinear Dyn., 14:3 (2018), 367–376 | MR
[21] Morozov, A. D. and Morozov, K. E., “Global Dynamics of Systems Close to Hamiltonian Ones under Nonconservative Quasi-Periodic Perturbation”, Russian J. Nonlinear Dyn., 15:2 (2019), 187–198 | MR
[22] Morozov, A. D. and Morozov, K. E., “Quasiperiodic Perturbations of Two-Dimensional Hamiltonian Systems with Nonmonotone Rotation”, J. Math. Sci. (N. Y.), 255:6 (2021), 741–752 | DOI | MR
[23] Morozov, A. D. and Morozov, K. E., “Synchronization of Quasiperiodic Oscillations in Nearly Hamiltonian Systems: The Degenerate Case”, Chaos, 31:8 (2021), Paper No. 083109, 10 pp. | DOI | MR
[24] Morozov, A. D. and Morozov, K. E., “Degenerate Resonances and Synchronization in Nearly Hamiltonian Systems under Quasi-Periodic Perturbations”, Regul. Chaotic Dyn., 27:5 (2022), 572–585 | DOI | MR
[25] Morozov, A. D. and Morozov, K. E., “Quasi-Periodic Parametric Perturbations of Two-Dimensional Hamiltonian Systems with Nonmonotonic Rotation”, Regul. Chaotic Dyn., 29:1 (2024), 65–77 | DOI | MR
[26] Bogolubov, N. N. and Mitropolskiy, Yu. A., Asymptotic Methods in the Theory of Nonlinear Oscillations, Nauka, Moscow, 1974, 503 pp. (Russian) | MR
[27] Hale, J. K., Ordinary Differential Equations, 2nd ed., R. E. Krieger, Huntington, N.Y., 1980, xvi, 361 pp. | MR
[28] Pontryagin, L. S., “On Dynamical Systems Close to Hamiltonian Systems”, Zh. Èksp. Teor. Fiz., 4:8 (1934), 234–238 (Russian)
[29] Tr. Mosk. Mat. Obs., 12 (1963), 3–52 (Russian)