Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2025_21_1_a1, author = {S. V. Gonchenko and K. E. Morozov}, title = {What is {Quasi-Conservative} {Dynamics?} {On} the {Anniversary} of {A.} {D.} {Morozov}}, journal = {Russian journal of nonlinear dynamics}, pages = {5--13}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2025}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2025_21_1_a1/} }
TY - JOUR AU - S. V. Gonchenko AU - K. E. Morozov TI - What is Quasi-Conservative Dynamics? On the Anniversary of A. D. Morozov JO - Russian journal of nonlinear dynamics PY - 2025 SP - 5 EP - 13 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2025_21_1_a1/ LA - en ID - ND_2025_21_1_a1 ER -
S. V. Gonchenko; K. E. Morozov. What is Quasi-Conservative Dynamics? On the Anniversary of A. D. Morozov. Russian journal of nonlinear dynamics, Tome 21 (2025) no. 1, pp. 5-13. http://geodesic.mathdoc.fr/item/ND_2025_21_1_a1/
[1] Morozov, A. D. and Shil'nikov, L. P., “To Mathematical Theory of Oscillatory Synchronization”, Dokl. Akad. Nauk SSSR, 223:6 (1975), 1340–1343 (Russian) | MR
[2] Morozov, A. D. and Shil'nikov, L. P., “On Sinchronization of Oscillations”, Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, 1975, no. 5 (Russian)
[3] Prikl. Mat. Mekh., 47:3 (1983), 385–394 (Russian) | DOI | MR
[4] Arnol'd, V. I., Mathematical Methods of Classical Mechanics, Grad. Texts in Math., 60, 2nd ed., Springer, New York, 1997, 529 pp. | MR
[5] Dokl. Akad. Nauk SSSR (N. S.), 98 (1954), 527–530 (Russian) | DOI | MR | MR
[6] Uspekhi Mat. Nauk, 18:6(114) (1963), 91–192 (Russian) | DOI | MR
[7] Moser, J., “On Invariant Curves of Area-Preserving Mappings of an Annulus”, Nach. Akad. Wiss. Göttingen, Math. Phys. Kl. II, 1962:1 (1962), 1–20 | MR
[8] Smale, S., “Diffeomorphisms with Many Periodic Points”, Differential and Combinatorial Topology: A Symposium in Honor of Marston Morse, ed. S. S. Cairns, Princeton Univ. Press, Princeton, N.J., 1965, 63–80 | DOI | MR
[9] Mat. Sb. (N.S.), 74(116):3 (1967), 378–397 (Russian) | DOI | MR
[10] Tr. Mosk. Mat. Obs., 12 (1963), 3–52 (Russian)
[11] Morozov, A. D., To the Theory of the Duffing Type Equations Close to the Nonlinear Conservative, PhD Thesis, Gorky State Univ., Gorky, 1975, 157 pp. (Russian)
[12] Zh. Vychisl. Mat. Mat. Fiz., 13:5 (1973), 1134–1152 (Russian) | DOI | MR
[13] Morozov, A. D., “The Complete Qualitative Investigation of Duffing's Equation”, Differ. Uravn., 12:2 (1976), 241–255 (Russian) | MR
[14] Morozov, A. D., Quasi-Conservative Systems: Cycles, Resonances and Chaos, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 30, World Sci., River Edge, N.J., 1998, 340 pp. | MR
[15] Morozov, A. D., Resonances, Cycles and Chaos in Quasi-Conservative Systems, R Dynamics, Izhevsk, 2005, 420 pp. (Russian) | MR
[16] Morozov, A. D., “On Existence of Homoclinic Curves in Non-Autonomous Relay System”, Proc. of the 3rd All-Union Congress on Theoretical and Applied Mechanics (Moscow, 1968) (Russian)
[17] Morozov, A. D., “On Piecewise Smooth Systems Containing Homoclinic Curves”, Proc. of the 5th Internat. Conf. on Nonlinear Oscillations (Kiev, 1969): Vol. 2. Qualitative Methods of Nonlinear Oscillations, Naukova Dumka, Kiev, 1970, 341–346 (Russian)
[18] Morozov, A. D., Problems of Theory Oscillations in Non-Conservative Systems, Close to Nonlinear Integrable Ones, PhD Dissertation, Moscow State Univ., Moscow, 1990, 283 pp. (Russian)
[19] Morozov, A. D., “Pendulum-Type Equations and Resonance”, Methods of the Qualitative Theory of Differential Equations, ed. E. A. Leontovich-Andronova, GGU, Gorki, 1980, 3–16 (Russian) | MR
[20] Morozov, A. D. and Fedorov, E. L., “On the Investigation of Equations with One Degree of Freedom, Close to Nonlinear Integrable Ones”, Differ. Uravn., 19:9 (1983), 1511–1516 (Russian) | MR
[21] Prikl. Mat. Mekh., 53:5 (1989), 721–730 (Russian) | DOI | MR
[22] Morozov, A. D., Mathematical Methods of the Theory of Oscillations, R Dynamics, Izhevsk, 2017, 144 pp. (Russian)
[23] Morozov, A. D., Introduction to Fractal Theory, R Dynamics, Izhevsk, 2004, 160 pp. (Russian) | MR
[24] Karabanov, A. A. and Morozov, A. D., “On Degenerate Resonances in Hamiltonian Systems with Two Degrees of Freedom”, Chaos Solitons Fractals, 69 (2014), 201–208 | DOI | MR
[25] Morozov, A. D. and Kondrashov, R. E., “On Resonances in Systems of Two Weakly Coupled Oscillators”, Regul. Chaotic Dyn., 14:2 (2009), 237–247 | DOI | MR
[26] Korolev, S. A. and Morozov, A. D., “On Periodic Perturbations of Self-Oscillating Pendulum Equations”, Nelin. Dinam., 6:1 (2010), 79–89 (Russian) | DOI
[27] Morozov, A. D. and Kostromina, O. S., “On Periodic Perturbations of Asymmetric Duffing – Van-der-Pol Equation”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 24:5 (2014), Art. 1450061, 16 pp. | DOI | MR
[28] Morozov, A. D. and Morozov, K. E., “Transitory Shift in Pendular Type Equations”, Nelin. Dinam., 12:4 (2016), 577–589 (Russian) | DOI | MR
[29] Differ. Uravn., 53:12 (2017), 1607–1615 (Russian) | DOI | DOI | MR
[30] Morozov, A. D. and Morozov, K. E., “On Synchronization of Quasiperiodic Oscillations”, Russian J. Nonlinear Dyn., 14:3 (2018), 367–376 | MR
[31] Morozov, A. D. and Morozov, K. E., “Global Dynamics of Systems Close to Hamiltonian Ones under Nonconservative Quasi-Periodic Perturbation”, Russian J. Nonlinear Dyn., 15:2 (2019), 187–198 | MR
[32] Morozov, A. D. and Morozov, K. E., “Synchronization of Quasiperiodic Oscillations in Nearly Hamiltonian Systems: The Degenerate Case”, Chaos, 31:8 (2021), Paper No. 083109, 10 pp. | DOI | MR
[33] Morozov, A. D. and Morozov, K. E., “Degenerate Resonances and Synchronization in Nearly Hamiltonian Systems under Quasi-Periodic Perturbations”, Regul. Chaotic Dyn., 27:5 (2022), 572–585 | DOI | MR
[34] Morozov, A. D. and Morozov, K. E., “Quasi-Periodic Parametric Perturbations of Two-Dimensional Hamiltonian Systems with Nonmonotonic Rotation”, Regul. Chaotic Dyn., 29:1 (2024), 65–77 | DOI | MR
[35] Morozov, A. D. and Dragunov, T. N., Visualization and Analysis of Invariant Sets for Dynamical Systems, R Dynamics, Institute of Computer Science, Izhevsk, 2003, 304 pp. (Russian) | MR
[36] Morozov, A. D. and Dragunov, T. N., Using the WinSet Program to Visualize Dynamic Systems, NNGU, Nighny Novgorod, 2007, 102 pp. (Russian)