Development of a System for Monitoring Medical Indicators Using Electromyography and Electrocardiography to Calculate
Russian journal of nonlinear dynamics, Tome 20 (2024) no. 5, pp. 859-874.

Voir la notice de l'article provenant de la source Math-Net.Ru

The use of exoskeletons in manufacturing, construction, and healthcare shows potential for enhancing performance and reducing injury risk. This study evaluates exoskeleton efficacy during heavy lifting using an advanced system integrating electromyography (EMG) and electrocardiography (ECG). Real-time monitoring with baseline correction and filtering ensured precise data. EMG analyses using Root Mean Square (RMS) and Integral methods revealed reduced muscle activation and cumulative exertion during exoskeleton-assisted tasks. ECG data indicated lower cardiovascular strain. Testing with a hip exoskeleton confirmed its ability to decrease physical load, emphasizing the value of integrated physiological monitoring for comprehensive exoskeleton performance assessment and future research directions.
Keywords: electromyography, electrocardiography, signal preprocessing, exoskeletons
@article{ND_2024_20_5_a9,
     author = {V. V. Koshman and V. A. Skvortsova and A. D. Kirilin},
     title = {Development of a {System} for {Monitoring} {Medical} {Indicators} {Using} {Electromyography} and {Electrocardiography} to {Calculate}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {859--874},
     publisher = {mathdoc},
     volume = {20},
     number = {5},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2024_20_5_a9/}
}
TY  - JOUR
AU  - V. V. Koshman
AU  - V. A. Skvortsova
AU  - A. D. Kirilin
TI  - Development of a System for Monitoring Medical Indicators Using Electromyography and Electrocardiography to Calculate
JO  - Russian journal of nonlinear dynamics
PY  - 2024
SP  - 859
EP  - 874
VL  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2024_20_5_a9/
LA  - en
ID  - ND_2024_20_5_a9
ER  - 
%0 Journal Article
%A V. V. Koshman
%A V. A. Skvortsova
%A A. D. Kirilin
%T Development of a System for Monitoring Medical Indicators Using Electromyography and Electrocardiography to Calculate
%J Russian journal of nonlinear dynamics
%D 2024
%P 859-874
%V 20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2024_20_5_a9/
%G en
%F ND_2024_20_5_a9
V. V. Koshman; V. A. Skvortsova; A. D. Kirilin. Development of a System for Monitoring Medical Indicators Using Electromyography and Electrocardiography to Calculate. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 5, pp. 859-874. http://geodesic.mathdoc.fr/item/ND_2024_20_5_a9/

[1] Cavalcanti Garcia, M. A. and Vieira, T. M. M., “Surface Electromyography: Why, When and How to Use It”, Rev. Andal. Med. Deport., 4:1 (2011), 17–28

[2] Jamal, M. Z., “Signal Acquisition Using Surface EMG and Circuit Design Considerations for Robotic Prosthesis”, Computational Intelligence in Electromyography Analysis: A Perspective on Current Applications and Future Challenges, ed. G. R. Naik, InTech, Rijeka, 2012, 427–448, 462 pp.

[3] Rukina, N. N., Kuznetsov, A. N., Borzikov, V. V., Komkova, O. V., and Belova, A. N., “Surface Electromyography: Its Role and Potential in the Development of Exoskeleton (Review)”, Sovremennye Tehnologii v Medicine, 8:2 (2016), 109–118 | DOI

[4] Reaz, M. B. I., Hussain, M. S., and Mohd-Yasin, F., “Techniques of EMG Signal Analysis: Detection, Processing, Classification and Applications”, Biol. Proced. Online, 8:1 (2006), 11–35 | DOI

[5] Ohiri, K. A., Pyles, C. O., Hamilton, L. H., Baker, M. M., McGuire, M. T., Nguyen, E. Q., Osborn, L. E., Rossick, K. M., McDowell, E. G., Strohsnitter, L. M., and Currano, L. J., “E-Textile Based Modular sEMG Suit for Large Area Level of Effort Analysis”, Sci. Rep., 12:1 (2022), Art. 9650, 14 pp. | DOI

[6] Zheng, L., Lowe, B., Hawke, A. L., and Wu, J. Z., “Evaluation and Test Methods of Industrial Exoskeletons in vitro, in vivo, and in silico: A Critical Review”, Crit. Rev. Biomed. Eng., 49:4 (2021), 1–13 | DOI

[7] Golabbakhsh, M., Masoumzadeh, M., and Sabahi, M., “ECG and Power Line Noise Removal from Respiratory EMG Signal Using Adaptive Filters”, Majlesi J. Electr. Eng., 5:4 (2011), 28–33

[8] Francis, J., “ECG Monitoring Leads and Special Leads”, Indian Pacing Electrophysiol. J., 16:3 (2016), 92–95 | DOI

[9] McMahon, G., Best, N., Coulter, T., and Erskine, R. M., “Increased Neuromuscular Activity, Force Output, and Resistance Exercise Volume When Using 5-Minute Compared with 2-Minute Rest Intervals between the Sets”, J. Strength Cond. Res., 38:9 (2024), 1527–1534 | DOI

[10] Valeriano, R., Bottaro, M., Cruz, L., Dutra, M., Lima, F., Vieira, C., Battaglini, C., and de Oliveira, R. J., “Impact of Rest Interval Duration on Muscle Performance in Hodgkin's Lymphoma Survivors”, J. Phys. Educ. Sport., 23:10 (2023), 2835–2841

[11] Orange Pi, Orange Pi

[12] Cameron, N., “ESP32 Microcontroller”, ESP32 Formats and Communication: Application of Communication Protocols with ESP32 Microcontroller, Maker Innovations Series, Apress, Berkeley, Calif., 2023, 1–54, 665 pp.

[13] Albalooshi, A., Jallad, A.-H. M., and Marpu, P. R., “Fault Analysis and Mitigation Techniques of the I2C Bus for Nanosatellite Missions”, IEEE Access, 11 (2023), 34709–34717 | DOI