Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2024_20_5_a7, author = {A. D. Kirilin and V. A. Skvortsova and V. V. Koshman}, title = {Development of a {Lever-Based} {Twisted} {String} {Actuator} for {Exoskeleton} {Systems}}, journal = {Russian journal of nonlinear dynamics}, pages = {827--844}, publisher = {mathdoc}, volume = {20}, number = {5}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2024_20_5_a7/} }
TY - JOUR AU - A. D. Kirilin AU - V. A. Skvortsova AU - V. V. Koshman TI - Development of a Lever-Based Twisted String Actuator for Exoskeleton Systems JO - Russian journal of nonlinear dynamics PY - 2024 SP - 827 EP - 844 VL - 20 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2024_20_5_a7/ LA - en ID - ND_2024_20_5_a7 ER -
%0 Journal Article %A A. D. Kirilin %A V. A. Skvortsova %A V. V. Koshman %T Development of a Lever-Based Twisted String Actuator for Exoskeleton Systems %J Russian journal of nonlinear dynamics %D 2024 %P 827-844 %V 20 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2024_20_5_a7/ %G en %F ND_2024_20_5_a7
A. D. Kirilin; V. A. Skvortsova; V. V. Koshman. Development of a Lever-Based Twisted String Actuator for Exoskeleton Systems. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 5, pp. 827-844. http://geodesic.mathdoc.fr/item/ND_2024_20_5_a7/
[1] de Looze, M. P., Bosch, T., Krause, F., Stadler, K. S., and O'Sullivan, L. W., “Exoskeletons for Industrial Application and Their Potential Effects on Physical Work Load”, Ergonomics, 59:5 (2016), 671–681 | DOI
[2] du Plessis, T., Djouani, K., and Oosthuizen, C., “A Review of Active Hand Exoskeletons for Rehabilitation and Assistance”, Robotics, 10:1 (2021), Art. 40, 42 pp. | DOI
[3] Gaponov, I., Popov, D., and Ryu, J.-H., “Twisted String Actuation Systems: A Study of the Mathematical Model and a Comparison of Twisted Strings”, IEEE/ASME Trans. Mechatronics, 19:4 (2014), 1331–1342 | DOI | MR
[4] Hosseini, M., Meattini, R., San-Millan, A., Palli, G., Melchiorri, C., and Paik, J., “A sEMG-Driven Soft ExoSuit Based on Twisted String Actuators for Elbow Assistive Applications”, IEEE Robot. Autom. Lett., 5:3 (2020), 4094–4101 | DOI
[5] Moeller, T., Krell-Roesch, J., Woll, A., and Stein, T., “Effects of Upper-Limb Exoskeletons Designed for Use in the Working Environment: A Literature Review”, Front. Robot. AI, 9 (2022), Art. 858893, 15 pp. | DOI
[6] Nedelchev, S., Gaponov, I., and Ryu, J.-H., “Accurate Dynamic Modeling of Twisted String Actuators Accounting for String Compliance and Friction”, IEEE Robot. Autom. Lett., 5:2 (2020), 3438–3443 | DOI
[7] Preethichandra, D. M. G., Piyathilaka, L., Sul, J.-H., Izhar, U., Samarasinghe, R., Arachchige, S. D., and de Silva, L. C., “Passive and Active Exoskeleton Solutions: Sensors, Actuators, Applications, and Recent Trends”, Sensors, 24:21 (2024), Art. 7095, 42 pp. | DOI
[8] Seong, H.-S., Kim, D.-H., Gaponov, I., and Ryu, J.-H., “Development of a Twisted String Actuator-Based Exoskeleton for Hip Joint Assistance in Lifting Tasks”, IEEE Internat. Conf. on Robotics and Automation (ICRA, Paris, France, 2020), 761–767
[9] Shoham, M., “Twisting Wire Actuator”, J. Mech. Des., 127:3 (2005), 441–445 | DOI
[10] Healthcare in Russia: Statistics from Rosstat, , 2023 rosstat.gov.ru
[11] Tiboni, M., Borboni, A., Vérité, F., Bregoli, C., and Amici, C., “Sensors and Actuation Technologies in Exoskeletons: A Review”, Sensors, 22:3 (2022), Art. 884, 61 pp. | DOI
[12] Würtz, T., May, C., Holz, B., Natale, C., Palli, G., and Melchiorri, C., “The Twisted String Actuation System: Modeling and Control”, Proc. of the IEEE/ASME Internat. Conf. on Advanced Intelligent Mechatronics (Montreal, QC, Canada, 2010), 1215–1220
[13] Zhang, J., Sheng, J., O'Neill, C. T., Walsh, C. J., Wood, R. J., Ryu, J.-H., Desai, J. P., and Yip, M. C., “Robotic Artificial Muscles: Current Progress and Future Perspectives”, IEEE Trans. Robot., 35:3 (2019), 761–781 | DOI
[14] Zhao, S., Yang, Y., Gao, Y., Zhang, Z., Zheng, T., and Zhu, Y., “Development of a Soft Knee Exosuit with Twisted String Actuators for Stair Climbing Assistance”, Proc. of the IEEE Internat. Conf. on Robotics and Biomimetics (ROBIO, Dali, China, 2019), 2541–2546