On Quasi-Convex Smooth Optimization Problems by a Comparison Oracle
Russian journal of nonlinear dynamics, Tome 20 (2024) no. 5, pp. 813-825

Voir la notice de l'article provenant de la source Math-Net.Ru

Frequently, when dealing with many machine learning models, optimization problems appear to be challenging due to a limited understanding of the constructions and characterizations of the objective functions in these problems. Therefore, major complications arise when dealing with first-order algorithms, in which gradient computations are challenging or even impossible in various scenarios. For this reason, we resort to derivative-free methods (zeroth-order methods). This paper is devoted to an approach to minimizing quasi-convex functions using a recently proposed (in [56]) comparison oracle only. This oracle compares function values at two points and tells which is larger, thus by the proposed approach, the comparisons are all we need to solve the optimization problem under consideration. The proposed algorithm to solve the considered problem is based on the technique of comparison-based gradient direction estimation and the comparison-based approximation normalized gradient descent. The normalized gradient descent algorithm is an adaptation of gradient descent, which updates according to the direction of the gradients, rather than the gradients themselves. We proved the convergence rate of the proposed algorithm when the objective function is smooth and strictly quasi-convex in $\mathbb{R}^n$, this algorithm needs $\mathcal{O}\left( \frac{n D^2}{\varepsilon^2} \log\left(\frac{n D}\varepsilon\right)\right)$ comparison queries to find an $\varepsilon$-approximate of the optimal solution, where $D$ is an upper bound of the distance between all generated iteration points and an optimal solution.
Keywords: quasi-convex function, gradient-free algorithm, smooth function, normalized gradient descent
Mots-clés : comparison oracle
@article{ND_2024_20_5_a6,
     author = {A. V. Gasnikov and M. S. Alkousa and A. V. Lobanov and Y. V. Dorn and F. S. Stonyakin and I. A. Kuruzov and S. R. Singh},
     title = {On {Quasi-Convex} {Smooth} {Optimization} {Problems} by a {Comparison} {Oracle}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {813--825},
     publisher = {mathdoc},
     volume = {20},
     number = {5},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2024_20_5_a6/}
}
TY  - JOUR
AU  - A. V. Gasnikov
AU  - M. S. Alkousa
AU  - A. V. Lobanov
AU  - Y. V. Dorn
AU  - F. S. Stonyakin
AU  - I. A. Kuruzov
AU  - S. R. Singh
TI  - On Quasi-Convex Smooth Optimization Problems by a Comparison Oracle
JO  - Russian journal of nonlinear dynamics
PY  - 2024
SP  - 813
EP  - 825
VL  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2024_20_5_a6/
LA  - en
ID  - ND_2024_20_5_a6
ER  - 
%0 Journal Article
%A A. V. Gasnikov
%A M. S. Alkousa
%A A. V. Lobanov
%A Y. V. Dorn
%A F. S. Stonyakin
%A I. A. Kuruzov
%A S. R. Singh
%T On Quasi-Convex Smooth Optimization Problems by a Comparison Oracle
%J Russian journal of nonlinear dynamics
%D 2024
%P 813-825
%V 20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2024_20_5_a6/
%G en
%F ND_2024_20_5_a6
A. V. Gasnikov; M. S. Alkousa; A. V. Lobanov; Y. V. Dorn; F. S. Stonyakin; I. A. Kuruzov; S. R. Singh. On Quasi-Convex Smooth Optimization Problems by a Comparison Oracle. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 5, pp. 813-825. http://geodesic.mathdoc.fr/item/ND_2024_20_5_a6/