On Quasi-Convex Smooth Optimization Problems by a Comparison Oracle
Russian journal of nonlinear dynamics, Tome 20 (2024) no. 5, pp. 813-825
Voir la notice de l'article provenant de la source Math-Net.Ru
Frequently, when dealing with many machine learning models, optimization problems appear to be challenging due to a limited understanding of the constructions and characterizations
of the objective functions in these problems. Therefore, major complications arise when dealing
with first-order algorithms, in which gradient computations are challenging or even impossible in
various scenarios. For this reason, we resort to derivative-free methods (zeroth-order methods).
This paper is devoted to an approach to minimizing quasi-convex functions using a recently
proposed (in [56]) comparison oracle only. This oracle compares function values at two points
and tells which is larger, thus by the proposed approach, the comparisons are all we need to solve
the optimization problem under consideration. The proposed algorithm to solve the considered
problem is based on the technique of comparison-based gradient direction estimation and the
comparison-based approximation normalized gradient descent. The normalized gradient descent
algorithm is an adaptation of gradient descent, which updates according to the direction of the
gradients, rather than the gradients themselves. We proved the convergence rate of the proposed
algorithm when the objective function is smooth and strictly quasi-convex in $\mathbb{R}^n$, this algorithm
needs $\mathcal{O}\left( \frac{n D^2}{\varepsilon^2} \log\left(\frac{n D}\varepsilon\right)\right)$
comparison queries to find an $\varepsilon$-approximate of the optimal solution,
where $D$ is an upper bound of the distance between all generated iteration points and an optimal
solution.
Keywords:
quasi-convex function, gradient-free algorithm, smooth function, normalized gradient descent
Mots-clés : comparison oracle
Mots-clés : comparison oracle
@article{ND_2024_20_5_a6,
author = {A. V. Gasnikov and M. S. Alkousa and A. V. Lobanov and Y. V. Dorn and F. S. Stonyakin and I. A. Kuruzov and S. R. Singh},
title = {On {Quasi-Convex} {Smooth} {Optimization} {Problems} by a {Comparison} {Oracle}},
journal = {Russian journal of nonlinear dynamics},
pages = {813--825},
publisher = {mathdoc},
volume = {20},
number = {5},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ND_2024_20_5_a6/}
}
TY - JOUR AU - A. V. Gasnikov AU - M. S. Alkousa AU - A. V. Lobanov AU - Y. V. Dorn AU - F. S. Stonyakin AU - I. A. Kuruzov AU - S. R. Singh TI - On Quasi-Convex Smooth Optimization Problems by a Comparison Oracle JO - Russian journal of nonlinear dynamics PY - 2024 SP - 813 EP - 825 VL - 20 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2024_20_5_a6/ LA - en ID - ND_2024_20_5_a6 ER -
%0 Journal Article %A A. V. Gasnikov %A M. S. Alkousa %A A. V. Lobanov %A Y. V. Dorn %A F. S. Stonyakin %A I. A. Kuruzov %A S. R. Singh %T On Quasi-Convex Smooth Optimization Problems by a Comparison Oracle %J Russian journal of nonlinear dynamics %D 2024 %P 813-825 %V 20 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2024_20_5_a6/ %G en %F ND_2024_20_5_a6
A. V. Gasnikov; M. S. Alkousa; A. V. Lobanov; Y. V. Dorn; F. S. Stonyakin; I. A. Kuruzov; S. R. Singh. On Quasi-Convex Smooth Optimization Problems by a Comparison Oracle. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 5, pp. 813-825. http://geodesic.mathdoc.fr/item/ND_2024_20_5_a6/