Design of Teleoperation System for Control over Industrial Manipulators with Upper-Limb Exoskeleton
Russian journal of nonlinear dynamics, Tome 20 (2024) no. 5, pp. 789-811.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper discusses how to develop and implement a bimanual teleoperation system using an exoskeleton suit and two collaborative robots. In the mathematical model, two methods of mapping have been implemented: Joint space mapping via direct control and Cartesian space mapping using Saturation in the Null Space. Both methods are verified in simulation using the developed mathematical model and on hardware using KUKA IIWA robots. A pick-and-place experiment is designed, and the corresponding end-effector positions of the master and the slave devices are obtained. Force feedback is introduced using two methods to improve accuracy and to show the applicability not only for collaborative robots but also on industrial manipulators.
Keywords: teleoperation, cobots, null space, control, mathematical modeling
Mots-clés : simulation
@article{ND_2024_20_5_a5,
     author = {R. R. Damindarov and I. Gaponov and A. V. Maloletov},
     title = {Design of {Teleoperation} {System} for {Control} over {Industrial} {Manipulators} with {Upper-Limb} {Exoskeleton}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {789--811},
     publisher = {mathdoc},
     volume = {20},
     number = {5},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2024_20_5_a5/}
}
TY  - JOUR
AU  - R. R. Damindarov
AU  - I. Gaponov
AU  - A. V. Maloletov
TI  - Design of Teleoperation System for Control over Industrial Manipulators with Upper-Limb Exoskeleton
JO  - Russian journal of nonlinear dynamics
PY  - 2024
SP  - 789
EP  - 811
VL  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2024_20_5_a5/
LA  - en
ID  - ND_2024_20_5_a5
ER  - 
%0 Journal Article
%A R. R. Damindarov
%A I. Gaponov
%A A. V. Maloletov
%T Design of Teleoperation System for Control over Industrial Manipulators with Upper-Limb Exoskeleton
%J Russian journal of nonlinear dynamics
%D 2024
%P 789-811
%V 20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2024_20_5_a5/
%G en
%F ND_2024_20_5_a5
R. R. Damindarov; I. Gaponov; A. V. Maloletov. Design of Teleoperation System for Control over Industrial Manipulators with Upper-Limb Exoskeleton. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 5, pp. 789-811. http://geodesic.mathdoc.fr/item/ND_2024_20_5_a5/

[1] Flacco, F., De Luca, A., and Khatib, O., “Motion Control of Redundant Robots under Joint Constraints: Saturation in the Null Space”, Proc. of the IEEE Internat. Conf. on Robotics and Automation (Saint Paul, Minn., USA, May 2012), 285–292

[2] Goertz, R. C., “Fundamentals of General-Purpose Remote Manipulators”, Nucleonics, 10:11 (1952), 36–42

[3] Sheridan, T. B. and Ferrell, W. R., “Remote Manipulative Control with Transmission Delay”, IEEE Trans. Hum. Fact. Electron., HFE-4:1 (1963), 25–29 | DOI

[4] Sheridan, T. B. and Ferrell, W. R., “Supervisory Control of Remote Manipulation”, IEEE Spectr., 4:10 (1967), 81–88 | DOI

[5] Miyazaki, F., Matsubayashi, S., Yoshimi, T., and Arimoto, S., “A New Control Methodology toward Advanced Teleoperation of Master-Slave Robot Systems”, Proc. of the IEEE Internat. Conf. on Robotics and Automation (San Francisco, Calif., USA, Apr 1986), 997–1002

[6] Lawrence, D. A., “Stability and Transparency in Bilateral Teleoperation”, IEEE Trans. Robot. Autom., 9:5 (1993), 624–637 | DOI

[7] Hirzinger, G., Brunner, B., Dietrich, J., and Heindl, J., “Sensor-Based Space Robotics-ROTEX and Its Telerobotic Features”, IEEE Trans. Robot. Autom., 9:5 (1993), 649–663 | DOI

[8] Griffin, W. B., Provancher, W. R., and Cutkosky, M. R., “Feedback Strategies for Telemanipulation with Shared Control of Object Handling Forces”, Presence: Teleoperators Virtual Environ., 14:6 (2005), 720–731 | DOI

[9] Pruks, V. and Ryu, J.-H., “A Framework for Interactive Virtual Fixture Generation for Shared Teleoperation in Unstructured Environments”, Proc. of the IEEE Internat. Conf. on Robotics and Automation (ICRA, Paris, France, 2020), 10234–10241

[10] De Barros, P. G. and Linderman, R. W., A Survey of User Interfaces for Robot Teleoperation, Tech. Rep. Series, WPI-CS-TR-09-12, Worcester Polytechnic Institute, Worcester, Mass., 2009, 59 pp.

[11] Omrčen, D., “Compensation of Velocity and/or Acceleration Joint Saturation Applied to Redundant Manipulator”, Robot. Auton. Syst., 35:4 (2007), 337–344

[12] Hennersperger, C., Fuerst, B., Virga, S., Zettinig, O., Frisch, B., Neff, Th., and Navab, N., “Towards MRI-Based Autonomous Robotic US Acquisitions: A First Feasibility Study”, IEEE Trans. Med. Imaging, 36:2 (2017), 538–548 | DOI

[13] Siciliano, B. and Khatib, O., “Robotics and the Handbook”, Springer Handbook of Robotics, 2nd ed., eds. B. Siciliano, O. Khatib, Springer, Cham, 2016, 1–7, LXXVI, 2228 pp. | Zbl

[14] Kebria, P. M., Abdi, H., Dalvand, M. M., Khosravi, A., and Nahavandi, S., “Control Methods for Internet-Based Teleoperation Systems: A Review”, IEEE Trans. Hum. Mach. Syst., 49:1 (2019), 32–46 | DOI

[15] Barros, J. J. O., Ferreira dos Santos, V. M., and Pereira da Silva, F. M. T., “Bimanual Haptics for Humanoid Robot Teleoperation Using ROS and V-REP”, Proc. of the IEEE Internat. Conf. on Autonomous Robot Systems and Competitions (Vila Real, Portugal, Apr 2015), 174–179

[16] Sun, D., Liao. Q., and Loutfi, A., “Single Master Bimanual Teleoperation System with Efficient Regulation”, IEEE Trans. Robot., 36:4 (2020), 1022–1037 | DOI

[17] Porcini, F., Chiaradia, D., Marcheschi, S., Solazzi, M., and Frisoli, A., “Evaluation of an Exoskeleton-Based Bimanual Teleoperation Architecture with Independently Passivated Slave Devices”, Proc. of the IEEE Internat. Conf. on Robotics and Automation (ICRA, Paris, France, 2020), 10205–10211

[18] Asanka Perera, G. V. A. G. and Abeykoon, A. M. H. S., “Review on Bilateral Teleoperation with Force, Position, Power and Impedance Scaling”, Proc. of the 7th Internat. Conf. on Information and Automation for Sustainability (Colombo, Sri Lanka, Dec 2014), 1–7

[19] Luo, J., Yang, C., Wang, N., and Wang, M., “Enhanced Teleoperation Performance Using Hybrid Control and Virtual Fixture”, Int. J. Syst. Sci., 50:3 (2019), 451–462 | DOI | MR | Zbl

[20] Laghi, M., Maimeri, M., Marchand, M., Leparoux, C., Catalano, M., Ajoudani, A., and Bicchi, A., “Shared-Autonomy Control for Intuitive Bimanual Tele-Manipulation”, Proc. of the IEEE/RAS 18th Internat. Conf. on Humanoid Robots (Humanoids) (Beijing, China, Nov 2018), 9 pp.

[21] Lee, J. H., Kim, Y., An, S.-G., and Bae, S.-H., “Robot Telekinesis: Application of a Unimanual and Bimanual Object Manipulation Technique to Robot Control”, Proc. of the IEEE Internat. Conf. on Robotics and Automation (ICRA, Paris, France, 2020), 9866–9872

[22] Talvas, A., Marchal, M., and Lécuyer, A., “A Survey on Bimanual Haptic Interaction”, IEEE Trans. Haptics, 7:3 (2014), 285–300 | DOI

[23] Rahman, S. M. M. and Ikeura, R., “Weight-Perception-Based Fixed and Variable Admittance Control Algorithms for Unimanual and Bimanual Lifting of Objects with a Power Assist Robotic System”, Int. J. Adv. Robot. Syst., 15:4 (2018), 73–78

[24] Hokayem, P. F. and Spong, M. W., “Bilateral Teleoperation: An Historical Survey”, Automatica, 42:12 (2006), 2035–2057 | DOI | MR | Zbl

[25] Jo, I., Park, Y., and Bae, J., “A Teleoperation System with an Exoskeleton Interface”, Proc. of the IEEE/ASME Internat. Conf. on Advanced Intelligent Mechatronics (Wollongong, NSW, Australia, Jul 2013), 1649–1654

[26] Nguyen, C. C., Wong, S., Thai, M. T., Hoang, T. T., Phan, P. T., Davies, J., Wu, L., Tsai, D., Phan, H.-P., Lovell, N. H., and Do, T. N., “Advanced User Interfaces for Teleoperated Surgical Robotic Systems”, Adv. Sensor Res., 2:4 (2023), Art. 2200036, 27 pp. | DOI