Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2024_20_5_a4, author = {G. K. Bychkov and D. M. Dvinskikh and A. V. Antsiferova and A. V. Gasnikov and A. V. Lobanov}, title = {Accelerated {Zero-Order} {SGD} under {High-Order} {Smoothness} and {Overparameterized} {Regime}}, journal = {Russian journal of nonlinear dynamics}, pages = {759--788}, publisher = {mathdoc}, volume = {20}, number = {5}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2024_20_5_a4/} }
TY - JOUR AU - G. K. Bychkov AU - D. M. Dvinskikh AU - A. V. Antsiferova AU - A. V. Gasnikov AU - A. V. Lobanov TI - Accelerated Zero-Order SGD under High-Order Smoothness and Overparameterized Regime JO - Russian journal of nonlinear dynamics PY - 2024 SP - 759 EP - 788 VL - 20 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2024_20_5_a4/ LA - en ID - ND_2024_20_5_a4 ER -
%0 Journal Article %A G. K. Bychkov %A D. M. Dvinskikh %A A. V. Antsiferova %A A. V. Gasnikov %A A. V. Lobanov %T Accelerated Zero-Order SGD under High-Order Smoothness and Overparameterized Regime %J Russian journal of nonlinear dynamics %D 2024 %P 759-788 %V 20 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2024_20_5_a4/ %G en %F ND_2024_20_5_a4
G. K. Bychkov; D. M. Dvinskikh; A. V. Antsiferova; A. V. Gasnikov; A. V. Lobanov. Accelerated Zero-Order SGD under High-Order Smoothness and Overparameterized Regime. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 5, pp. 759-788. http://geodesic.mathdoc.fr/item/ND_2024_20_5_a4/
[1] Polyak, B. T., Introduction to Optimization, Optimization Software, New York, 1987, xxvi, 438 pp. | MR
[2] Granichin, O. N. and Polyak, B. T., Randomized Algorithms of an Estimation and Optimization under Almost Arbitrary Noises, Nauka, Moscow, 2003, 291 pp.
[3] Risteski, A. and Li, Y., “Algorithms and Matching Lower Bounds for Approximately-Convex Optimization”, Proc. of the 30th Conf. on Neural Information Processing Systems (NIPS, Barcelona, Spain, Dec 2016), 4745–4753
[4] Vasin, A., Gasnikov, A., and Spokoiny, V., Stopping Rules for Accelerated Gradient Methods with Additive Noise in Gradient, WIAS Preprint No. 2812, WIAS, Berlin, 2021, 40 pp.
[5] Spall, J. C., Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control, Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley, Hoboken, N.J., 2003, xx, 595 pp. | MR | Zbl
[6] Conn, A. R., Scheinberg, K., and Vicente, L. N., Introduction to Derivative-Free Optimization, SIAM, Philadelphia, Penn., 2009, 289 pp. | MR | Zbl
[7] Duchi, J., Jordan, M., Wainwright, M., and Wibisono, A., “Optimal Rates for Zero-Order Convex Optimization: The Power of Two Function Evaluations”, IEEE Trans. Inf. Theory, 61:5 (2015), 2788–2806 | DOI | MR | Zbl
[8] Shamir, O., “An Optimal Algorithm for Bandit and Zero-Order Convex Optimization with Two-Point Feedback”, J. Mach. Learn. Res., 18:1 (2017), 1703–1713 | MR
[9] Nesterov, Yu. and Spokoiny, V., “Random Gradient-Free Minimization of Convex Functions”, Found. Comput. Math., 17:2 (2017), 527–566 | DOI | MR | Zbl
[10] Avtomat. i Telemekh., 2017, no. 2, 36–49 (Russian) | DOI | MR | Zbl
[11] Beznosikov, A., Sadiev, A., and Gasnikov, A., “Gradient-Free Methods with Inexact Oracle for Convex-Concave Stochastic Saddle-Point Problem”, MOTOR 2020: Mathematical Optimization Theory and Operations Research, Commun. Comput. Inf. Sci., 1275, eds. Yu. Kochetov, I. Bykadorov, T. Gruzdeva, Springer, Cham, 2020, 105–119 | MR | Zbl
[12] Gasnikov, A., Novitskii, A., Novitskii, V., Abdukhakimov, F., Kamzolov, D., Beznosikov, A., Takáč, M., Dvurechensky, P., and Gu, B., The Power of First-Order Smooth Optimization for Black-Box Non-Smooth Problems, , 2022, 33 pp. arXiv:2201.12289 [math.OC]
[13] Flaxman, A. D., Kalai, A. T., and McMahan, H. B., “Online Convex Optimization in the Bandit Setting: Gradient Descent without a Gradient”, Proc. of the 16th Annual ACM/SIAM Symp. on Discrete Algorithms (Vancouver, BC, Canada, 2005), 385–394 | MR | Zbl
[14] Bartlett, P., Dani, V., Hayes, Th., Kakade, Sh., Rakhlin, A., and Tewari, A., “High-Probability Regret Bounds for Bandit Online Linear Optimization”, Proc. of the 21st Annual Conf. on Learning Theory (COLT'2008, Helsinki, Finland, Jul 2008), 335–342 | MR
[15] Bubeck, S. and Cesa-Bianchi, N., “Regret Analysis of Stochastic and Nonstochastic Multi-Armed Bandit Problems”, Found. Trends Mach. Learn., 5:1 (2012), 1–122 | DOI | MR | Zbl
[16] Ge, Y., Wang, Q., Zheng, B., Zhuang, X., Li, Q., Shen, C., and Wang, C., “Anti-Distillation Backdoor Attacks: Backdoors Can Really Survive in Knowledge Distillation”, Proc. of the 29th ACM Internat. Conf. on Multimedia (Oct 2021), 826–834
[17] Dvinskikh, D., Tominin, V., Tominin, Ya., and Gasnikov, A., Gradient-Free Optimization for Non-Smooth Saddle Point Problems under Adversarial Noise, , 2022, 40 pp. arXiv:2202.06114 [math.OC] | MR
[18] Lobanov, A., “Stochastic Adversarial Noise in the “Black Box” Optimization Problem”, Optimization and Applications: Revised Selected Papers of the 14th Internat. Conf. (OPTIMA, Petrovac, Montenegro, Sep 2023), 60–71 | MR | Zbl
[19] Avtomat. i Telemekh., 2018, no. 8, 38–49 (Russian) | DOI | DOI | MR | Zbl
[20] Jacot, A., Gabriel, F., and Hongler, C., “Neural Tangent Kernel: Convergence and Generalization in Neural Networks”, Proc. of the 32nd Conf. on Neural Information Processing Systems (NeurIPS, Montreal, Canada, Dec 2018), 10 pp.
[21] Allen-Zhu, Z., and Li, Y., and Liang, Y., “Learning and Generalization in Overparameterized Neural Networks, Going beyond Two Layers”, Proc. of the 33rd Internat. Conf. on Neural Information Processing Systems (NIPS'19, Vancouver, BC, Canada, Dec 2019), 6158–6169
[22] Belkin, M., Hsu, D., Ma, S., and Mandal, S., “Reconciling Modern Machine-Learning Practice and the Classical Bias-Variance Trade-Off”, Proc. Natl. Acad. Sci. USA, 116:32 (2019), 15849–15854 | DOI | MR | Zbl
[23] Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E., Cai, T., Rutherford, E., de Las Casas, D., Hendricks, L. A., Welbl, J., Clark, A., Hennigan, T., Noland, E., Millican, K., van den Driessche, G., Damoc, B., Guy, A., Osindero, S., Simonyan, K., Elsen, E., Vinyals, O., Rae, J. W., and Sifre, L., “Training Compute-Optimal Large Language Models”, Proc. of the 36th Internat. Conf. on Neural Information Processing Systems (NIPS'22, New Orleans, La., USA, 2022), 15 pp.
[24] Eldan, R. and Li, Y., Tinystories: How Small Can Language Models Be and Still Speak Coherent English?, , 2023, 27 pp. arXiv:2305.07759 [cs.CL]
[25] Lobanov, A. and Gasnikov, A., “Accelerated Zero-Order SGD Method for Solving the Black Box Optimization Problem under “Overparametrization” Condition”, Proc. of the 14th Internat. Conf. “Optimization and Applications” (OPTIMA'2023, Petrovac, Montenegro, Sep 2023), 72–83 | MR | Zbl
[26] Problemy Peredachi Informatsii, 26:2 (1990), 45–53 (Russian) | MR | Zbl
[27] Bach, F. and Perchet, V., “Highly-Smooth Zero-th Order Online Optimization”, Proc. of the 29th Annual Conf. on Learning Theory (COLT, New York, USA, Jun 2016), 257–283
[28] Akhavan, A., Chzhen, E., Pontil, M., and Tsybakov, A. B., Gradient-Free Optimization of Highly Smooth Functions: Improved Analysis and a New Algorithm, , 2023, 50 pp. arXiv:2306.02159 [math.ST] | MR
[29] Woodworth, B. and Srebro, N., “An Even More Optimal Stochastic Optimization Algorithm: Minibatching and Interpolation Learning”, NIPS'21: Proc. of the 35th Internat. Conf. on Neural Information Processing Systems, 7333–7345
[30] Zorich, V. A., Mathematical Analysis: II, transl. from the 5th and the 6th corrected (2012) Russian editions by R. Cooke and O. Paniagua, Universitext, 2nd ed., Springer, Heidelberg, 2016, xx, 720 pp. | DOI | MR | Zbl
[31] Akhavan, A., Chzhen, E., Pontil, M., and Tsybakov, A. B., “A Gradient Estimator via L1-Randomization for Online Zero-Order Optimization with Two Point Feedback”, Proc. of the 36th Internat. Conf. on Neural Information Processing Systems (NIPS'22), 7685–7696
[32] Lobanov, A., Bashirov, N., and Gasnikov, A., “The “Black-Box” Optimization Problem: Zero-Order Accelerated Stochastic Method via Kernel Approximation”, J. Optim. Theory Appl., 203:3 (2024), 2451–2486 | DOI | MR | Zbl