Kinematic Calibration of an Industrial Manipulator without External Measurement Devices
Russian journal of nonlinear dynamics, Tome 20 (2024) no. 5, pp. 979-1001.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents a practical approach to fully automated kinematic calibration of an industrial manipulator. The approach is based on the principle of plane constraint. The electrical signal is used to fix the moment of contact between the conductive tool and the flat surface. The measurement data are manipulator configurations (joint angles) at the moment of contact. A modification of the algorithm to deal with the scaling problem is also proposed. This approach provides both high calibration accuracy and lower cost of the experimental setup compared to coordinate measuring machines (CMMs), laser trackers, and vision systems. The article examines the impact of various methods of kinematic parameterization of manipulators: the Denavit – Hartenberg agreement (DH), product of exponentials (POE), as well as the complete and parametrically continuous model (CPC) on the calibration accuracy. A comparison is made of the open-loop and the proposed closed-loop calibration methods on the Puma 560 model known in the literature. POE parameters were converted to DH and CPC to compare accuracy after calibration based on these parameterizations. The method of computing POE-CPC transformation as a solution to a certain optimization problem is proposed. The problem of identifying geometric parameters in the presence of restrictions is solved by gradient optimization methods. Experiments have been carried out on an ABB IRB 1600 industrial manipulator with an installed conductive probe and an ABB IRBP A-500 robotic positioner with a conductive metal flat surface. A technique for indirectly checking the accuracy of calibration of kinematic parameters is proposed based on a study of the accuracy of manipulation when using these parameters. A comparison is made of the manipulation accuracy when using four sets of parameters: nominal parameters obtained during factory calibration with the Leica AT901B laser tracker and two sets of parameters obtained by applying the proposed calibration method. The kinematic parameters obtained from the experiment determine more accurately the position of the manipulator TCP for part of the configuration working space, even for areas that were not used for calibration.
Keywords: industrial manipulators, close-loop calibration, kinematics conventions, parameter identification, product of exponentials, optimization methods
@article{ND_2024_20_5_a16,
     author = {O. Yu. Sumenkov and D. D. Kulminskiy and S. V. Gusev},
     title = {Kinematic {Calibration} of an {Industrial} {Manipulator} without {External} {Measurement} {Devices}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {979--1001},
     publisher = {mathdoc},
     volume = {20},
     number = {5},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2024_20_5_a16/}
}
TY  - JOUR
AU  - O. Yu. Sumenkov
AU  - D. D. Kulminskiy
AU  - S. V. Gusev
TI  - Kinematic Calibration of an Industrial Manipulator without External Measurement Devices
JO  - Russian journal of nonlinear dynamics
PY  - 2024
SP  - 979
EP  - 1001
VL  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2024_20_5_a16/
LA  - en
ID  - ND_2024_20_5_a16
ER  - 
%0 Journal Article
%A O. Yu. Sumenkov
%A D. D. Kulminskiy
%A S. V. Gusev
%T Kinematic Calibration of an Industrial Manipulator without External Measurement Devices
%J Russian journal of nonlinear dynamics
%D 2024
%P 979-1001
%V 20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2024_20_5_a16/
%G en
%F ND_2024_20_5_a16
O. Yu. Sumenkov; D. D. Kulminskiy; S. V. Gusev. Kinematic Calibration of an Industrial Manipulator without External Measurement Devices. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 5, pp. 979-1001. http://geodesic.mathdoc.fr/item/ND_2024_20_5_a16/

[1] Mooring, B. W., Roth, Z. S., and Driels, M. R., Fundamentals of Manipulator Calibration, Wiley-Interscience, New York, 1991, 329 pp.

[2] Hollerbach, J. M. and Bennett, D., “Automatic Kinematic Calibration Using a Motion Tracking System”, Proc. of the 4th Internat. Symp. on Robotics Research (Santa Clara, Calif., USA, 1988), 191–198

[3] Schröer, K., “Theory of Kinematic Modelling and Numerical Procedures for Robot Calibration”, Robot Calibration, eds. R. Bernhardt, S. L. Albright, Chapman Hall, London, 1993, 157–196, 324 pp.

[4] Okamura, K. and Park, F. C., “Kinematic Calibration Using the Product of Exponentials Formula”, Robotica, 14:4 (1996), 415–421 | DOI

[5] Khalil, W., Besnard, S., and Lemoine, P., “Comparison Study of the Geometric Parameter Calibration Methods”, Int. J. Robot. Autom., 15:2 (2000), 56–67

[6] Daney, D., Papegay, Y., and Madeline, B., “Choosing Measurement Poses for Robot Calibration with the Local Convergence Method and Tabu Search”, Int. J. Robot. Res., 24:6 (2005), 501–518 | DOI

[7] He, R., Zhao, Y., Yang, S., and Yang, S., “Kinematic-Parameter Identification for Serial-Robot Calibration Based on POE Formula”, IEEE Trans. on Robotics, 26:3 (2010), 411–423 | DOI

[8] Nubiola, A. and Bonev, I. A., “Absolute Calibration of an ABB IRB 1600 Robot Using a Laser Tracker”, Robot. Comput.-Integr. Manuf., 29:1 (2013), 236–245 | DOI

[9] Van Toan, N. and Khoi, P. B., “A SVD-Least-Square Algorithm for Manipulator Kinematic Calibration Based on the Product of Exponentials Formula”, J. Mech. Sci. Technol., 32:11 (2018), 5401–5409 | DOI

[10] Kana, S., Gurnani, J., Ramanathan, V., Turlapati, S. H., Ariffin, M. Z., and Campolo, D., “Fast Kinematic Re-Calibration for Industrial Robot Arms”, Sensors, 22:6 (2022), Art. 2295, 25 pp. | DOI

[11] Gautier, M. and Khalil, W., “Trajectories for the Identification of Base Inertial Parameters of Robots”, Int. J. Robot. Res., 11:4 (1992), 362–375 | DOI

[12] Swevers, J., Verdonck, W., Naumer, B., Pieters, S., and Biber, E., “An Experimental Robot Load Identification Method for Industrial Application”, Int. J. Robot. Res., 21:8 (2002), 701–712 | DOI

[13] Khalil, W., Gautier, M., and Lemoine, Ph., “Identification of the Payload Inertial Parameters of Industrial Manipulators”, Proc. of the IEEE Internat. Conf. on Robotics and Automation (ICRA, Rome, Italy, May 2007), 4943–4948

[14] Jubien, A., Gautier, M., and Janot, A., “Dynamic Identification of the Kuka LWR Robot Using Motor Torques and Joint Torque Sensors Data”, IFAC Proc. Vol., 47:3 (2014), 8391–8396 | DOI

[15] Gaz, C., Flacco, F., and Luca, A. D., “Extracting Feasible Robot Parameters from Dynamic Coefficients Using Nonlinear Optimization Methods”, Proc. of the IEEE Internat. Conf. on Robotics and Automation (ICRA, Stockholm, Sweden, Jun 2016), 2075–2081

[16] Alici, G. and Shirinzadeh, B., “Enhanced Stiffness Modeling, Identification and Characterization for Robot Manipulators”, IEEE Trans. on Robotics, 21:4 (2005), 554–564 | DOI

[17] Klimchik, A., Furet, B., Caro, S., and Pashkevich, A., “Identification of the Manipulator Stiffness Model Parameters in Industrial Environment”, Mech. Mach. Theory, 90 (2015), 1–22 | DOI

[18] Mikhel, S. K. and Klimchik, A. S., “Stiffness Model Reduction for Manipulators with Double Encoders: Algebraic Approach”, Russian J. Nonlinear Dyn., 17:3 (2021), 347–360 | Zbl

[19] Joubair, A. and Bonev, I. A., “Non-Kinematic Calibration of a Six-Axis Serial Robot Using Planar Constraints”, Precis. Eng., 40 (2015), 325–333 | DOI

[20] Kolyubin, S., Shiriaev, A., and Jubien, A., “Consistent Kinematics and Dynamics Calibration of Lightweight Redundant Industrial Manipulators”, Int. J. Adv. Manuf. Tech., 101:1–4 (2019), 243–259 | DOI

[21] Chen, Q., Chen, W., Yang, G., and Liu, R., “An Integrated Two-Level Self-Calibration Method for a Cable-Driven Humanoid Arm”, IEEE Trans. Autom. Sci. Eng., 10:2 (2013), 380–391 | DOI

[22] Chen-Gang, Li-Tong, Chu-Ming, Xuan, J.-Q., and Xu, S.-H., “Review on Kinematics Calibration Technology of Serial Robots”, Int. J. Precis. Eng. Manuf., 15:8 (2014), 1759–1774 | DOI

[23] Lynch, K. and Park, F., Modern Robotics: Mechanics, Planning, and Control, Cambridge Univ. Press, Cambridge, 2017, 544 pp.

[24] Denavit, J. and Hartenberg, R. S., “A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices”, J. Appl. Mech., 22:2 (1955), 215–221 | DOI | Zbl

[25] Hayati, S., “Robot Arm Geometric Link Parameter Estimation”, Proc. of the 22nd IEEE Conf. on Decision and Control (San Antonio, Texas, USA, Dec 1983), 1477–1483

[26] Brockett, R. W., “Robotic Manipulators and the Product of Exponentials Formula”, Mathematical Theory of Networks and Systems, Proc. of the MTNS'83 Internat. Sympos. (Beer Sheva, Israel, Jun 1983), Lecture Notes in Control and Information Sciences, 58, ed. P. A. Fuhrmann, Springer, Berlin, 1984, 120–129 | DOI

[27] Mooring, B. W. and Tang, G. R., “An Improved Method for Identifying the Kinematic Parameters in a Six Axis Robot”, Proc. of the ASME Internat. Computers in Eng. Conf. (Las Vegas, Nev., USA, Aug 1984), 79–84

[28] Gupta, K. C., “Kinematic Analysis of Manipulators Using the Zero Reference Position Description”, Int. J. Robot. Res., 5:2 (1986), 5–13 | DOI

[29] Zhuang, H., Roth, Z. S., and Hamano, F., “A Complete and Parametrically Continuous Kinematic Model for Robot Manipulators”, Proc. of the IEEE Internat. Conf. on Robotics and Automation (ICRA, Cincinnati, Ohio, USA, May 1990), Vol. 1, 92–97

[30] Siciliano, B., Khatib, O., and Kröger, T., Springer Handbook of Robotics, Springer Handbooks, Springer, Berlin, 2008, LX, 1611 pp. | Zbl

[31] Gong, C., Yuan, J., and Ni, J., “A Self-Calibration Method for Robotic Measurement System”, J. Manuf. Sci. Eng., 122:1 (1999), 174–181 | DOI

[32] Meng, Y. and Zhuang, H., “Autonomous Robot Calibration Using Vision Technology”, Robot. Comput.-Integr. Manuf., 23:4 (2007), 436–446 | DOI

[33] Boby, R., Maloletov, A., and Klimchik, A., “Measurement of End-Effector Pose Errors and the Cable Profile of Cable-Driven Robot Using Monocular Camera”, J. Intell. Robot. Syst., 103:2 (2021), Art. 32 | DOI

[34] Balanji, H. M., Turgut, A. E., and Tunc, L. T., “A Novel Vision-Based Calibration Framework for Industrial Robotic Manipulators”, Robot. Comput.-Integr. Manuf., 73:C (2022), 1022–1048 | DOI

[35] Meggiolaro, M. A., Scriffignano, G., and Dubowsky, S., “Manipulator Calibration Using a Single Endpoint Contact Constraint”, Proc. of the ASME Internat. Design Engineering Technical Conferences and Computers and Information in Engineering Conference (Baltimore, Md, USA, Sep 2000), Paper No. DETC2000/MECH-14129, 759–767

[36] Gatla, C. S., Lumia, R., Wood, J., and Starr, G., “An Automated Method to Calibrate Industrial Robots Using a Virtual Closed Kinematic Chain”, IEEE Trans. on Robotics, 23:6 (2007), 1105–1116 | DOI

[37] Kang, H. J., Jeong, J. W., Shin, S. W., Suh, Y. S., and Ro, Y. S., “Autonomous Kinematic Calibration of the Robot Manipulator with a Linear Laser-Vision Sensor”, Advanced Intelligent Computing Theories and Applications: With Aspects of Artificial Intelligence (ICIC, Qingdao, China, Aug 2007), Lect. Notes Comput. Sci., 4682, eds. D. S. Huang, L. Heutte, M. Loog, Springer, Berlin, 2007, 1102–1109 | DOI

[38] Ikits, M. and Hollerbach, J. M., “Kinematic Calibration Using a Plane Constraint”, Proc. of the IEEE Internat. Conf. on Robotics and Automation (Albuquerque, N.M., USA, Aug 1997), Vol. 4, 3191–3196

[39] Zhuang, H., Motaghedi, S., and Roth, Z., “Robot Calibration with Planar Constraints”, Proc. of the IEEE Internat. Conf. on Robotics and Automation (Detroit, Mich., USA, May 1999), Vol. 1, 805–810

[40] Besnard, S., Khalil, W., and Garcia, G., “Geometric Calibration of Robots Using Multiple Plane Constraints”, Advances in Robot Kinematics, eds. J. Lenarčič, M. M. Stanišić, Springer, Dordrecht, 2000, 61–70 | DOI

[41] Hage, H., Bidaud, P., and Jardin, N., “Practical Consideration on the Identification of the Kinematic Parameters of the Stäubli TX90 Robot”, Proc. of the 13th World Congr. in Mechanism and Machine Science (Guanajuato, México, Jun 2011), 8 pp.

[42] Yang, P., Luo, K., and Wu, R., “A Calibration Method for Spatial Error of Industrial Robot under Variable Load Conditions Based on Double-Ball Rotary Structure and Three Contact Displacement Sensors”, Precis. Eng., 85 (2024), 291–303 | DOI

[43] Everett, L. J., “Forward Calibration of Closed-Loop Jointed Manipulators”, Int. J. Robot. Res., 8:4 (1989), 85–91 | DOI

[44] Chiu, Y.-J. and Perng, M.-H., “Self-Calibration of a General Hexapod Manipulator Using Cylinder Constraints”, Int. J. Mach. Tools Manuf., 43:10 (2003), 1051–1066 | DOI

[45] Park, F. C. and Okamura, K., “Kinematic Calibration and the Product of Exponentials Formula”, Advances in Robot Kinematics and Computational Geometry, eds. J. Lenarčič, B. Ravani, Springer, Dordrecht, 1994, 119–128 | DOI

[46] Zhuang, H. and Roth, Z. S., “A Unified Approach to Kinematic Modeling, Identification and Compensation for Robot Calibration”, Advances in Robotic Systems, Control and Dynamic Systems, 39, part 1, ed. C. T. Leondes, Acad. Press, New York, 1991, 71–127 | DOI

[47] Wu, L., Crawford, R., and Roberts, J. M., “An Analytic Approach to Converting POE Parameters into D–H Parameters for Serial-Link Robots”, IEEE Robot. Autom. Lett., 2:4 (2017), 2174–2179 | DOI

[48] Kulminsky, D. D., Gusev, S. V., and Sumenkov, O. Yu., System and Method of Kinematic Parameters Calibration of Robotic Manipulator, Patent RU 2 810 082, Dec 21, 2023

[49] Armstrong Piepmeier, J., McMurray, G. V., and Lipkin, H., “A Dynamic Quasi-Newton Method for Uncalibrated Visual Servoing”, Proc. of the IEEE Internat. Conf. on Robotics and Automation (Detroit, Mich., USA, 1999), Vol. 2, Cat. No. 99CH36288C, 1595–1600

[50] Wu, L., Yang, X., Chen, K., and Ren, H., “A Minimal POE-Based Model for Robotic Kinematic Calibration with Only Position Measurements”, IEEE Trans. Autom. Sci. Eng., 12:2 (2015), 758–763 | DOI

[51] Xiong, G., Ding, Y., Zhu, L., and Su, C.-Y., “A Product-of-Exponential-Based Robot Calibration Method with Optimal Measurement Configurations”, Int. J. Adv. Robot. Syst., 14:6 (2017), 172988141774355, 12 pp. | DOI

[52] Khalil, W., Gautier, M., and Enguehard, Ch., “Identifiable Parameters and Optimum Configurations for Robots Calibration”, Robotica, 9:1 (1991), 63–70 | DOI

[53] Borm, J.-H. and Meng, C.-H., “Determination of Optimal Measurement Configurations for Robot Calibration Based on Observability Measure”, Int. J. Robot. Res., 10:1 (1991), 51–63 | DOI

[54] Sun, Y. and Hollerbach, J. M., “Observability Index Selection for Robot Calibration”, Proc. of the IEEE Internat. Conf. on Robotics and Automation (Pasadena, Calif., USA, May 2008), 831–836

[55] Joubair, A. and Bonev, I. A., “Comparison of the Efficiency of Five Observability Indices for Robot Calibration”, Mech. Mach. Theory, 70 (2013), 254–265 | DOI

[56] Shirafuji, Sh., Goto, H., Zhang, X., Okuhara, K., Takamura, N., Kagawa, N., Baba, N., and Ota, J., “Visual-Biased Observability Index for Camera-Based Robot Calibration”, J. Mechanisms Robotics, 16:5 (2023), Art. 051010, 10 pp.