Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2024_20_5_a15, author = {V. N. Smirnov and K. M. Kazistova and I. A. Sudakov and V. Leplat and A. V. Gasnikov and A. V. Lobanov}, title = {Asymptotic {Analysis} of the {Ruppert} {\textendash} {Polyak} {Averaging} for {Stochastic} {Order} {Oracle}}, journal = {Russian journal of nonlinear dynamics}, pages = {961--978}, publisher = {mathdoc}, volume = {20}, number = {5}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2024_20_5_a15/} }
TY - JOUR AU - V. N. Smirnov AU - K. M. Kazistova AU - I. A. Sudakov AU - V. Leplat AU - A. V. Gasnikov AU - A. V. Lobanov TI - Asymptotic Analysis of the Ruppert – Polyak Averaging for Stochastic Order Oracle JO - Russian journal of nonlinear dynamics PY - 2024 SP - 961 EP - 978 VL - 20 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2024_20_5_a15/ LA - en ID - ND_2024_20_5_a15 ER -
%0 Journal Article %A V. N. Smirnov %A K. M. Kazistova %A I. A. Sudakov %A V. Leplat %A A. V. Gasnikov %A A. V. Lobanov %T Asymptotic Analysis of the Ruppert – Polyak Averaging for Stochastic Order Oracle %J Russian journal of nonlinear dynamics %D 2024 %P 961-978 %V 20 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2024_20_5_a15/ %G en %F ND_2024_20_5_a15
V. N. Smirnov; K. M. Kazistova; I. A. Sudakov; V. Leplat; A. V. Gasnikov; A. V. Lobanov. Asymptotic Analysis of the Ruppert – Polyak Averaging for Stochastic Order Oracle. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 5, pp. 961-978. http://geodesic.mathdoc.fr/item/ND_2024_20_5_a15/
[1] Avtomat. i Telemekh., 1980, no. 8, 74–84 (Russian) | MR | Zbl
[2] Polyak, B. T. and Juditsky, A. B., “Acceleration of Stochastic Approximation by Averaging”, SIAM J. Control Optim., 30:4 (1992), 838–855 | DOI | MR | Zbl
[3] Lobanov, A., Gasnikov, A., and Krasnov, A., Acceleration Exists! Optimization Problems When Oracle Can Only Compare Objective Function Values, , 2024, 33 pp. arXiv:2402.09014 [math.OC]
[4] Zhang, C. and Li, T., Comparisons Are All You Need for Optimizing Smooth Functions, , 2024, 39 pp. arXiv:2405.11454 [cs.LG]
[5] Cutkosky, A. and Mehta, H., “Momentum improves normalized sgd”, International Conference on Machine Learning, 2020, 2260–2268
[6] Sun, T., Wang, Q., Li, D., and Wang, B., “Momentum ensures convergence of signsgd under weaker assumptions”, International Conference on Machine Learning, 2023, 33077–33099
[7] Liu, S., Chen, P.-Y., Chen, X., and Hong, M., “signSGD via Zeroth-Order Oracle”, International Conference on Learning Representations, 2019
[8] Praneeth Karimireddy, S., Rebjock, Q., Stich, S. U., and Jaggi, M., Error Feedback Fixes SignSGD and other Gradient Compression Schemes, , 2019, 22 pp. arXiv:1901.09847 [cs.LG]
[9] Saha, A., Koren, T., and Mansour, Y., “Dueling Convex Optimization”, Proc. of the 38th Internat. Conf. on Machine Learning (ICML'2021), 9245–9254
[10] Boyd, S. and Vandenberghe, L., Convex Optimization, Cambridge Univ. Press, Cambridge, 2004, 727 pp. | MR | Zbl
[11] Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C. L., Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L., Simens, M., Askell, A., Welinder, P., Christiano, P., Leike, J., and Lowe, R., “Training Language Models to Follow Instructions with Human Feedback”, Proc. of the 36th Internat. Conf. on Neural Information Processing Systems (NIPS, New Orleans, La., USA, 2022), 27730–27744
[12] Chen, P.-Y., Zhang, H., Sharma, Y., Yi, J., and Hsieh, C.-J., Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, 2017, Zoo: Zeroth Order Optimization based Black-Box Attacks to Deep Neural Networks without Training Substitute Models
[13] Conn, A. R., Scheinberg, K., and Vicente, L. N., Introduction to Derivative-Free Optimization, SIAM, Philadelphia, Penn., 2009, 289 pp. | MR | Zbl
[14] Nesterov, Yu., Lectures on Convex Optimization, Springer Optimization and Its Applications, 137, 2nd ed., Springer, Cham, 2018, xxiii, 589 pp. | DOI | MR | Zbl
[15] Tang, Z., Rybin, D., and Chang, T.-H., Zeroth-Order Optimization Meets Human Feedback: Provable Learning via Ranking Oracles, , 2023, 33 pp. arXiv:2303.03751 [cs.LG]
[16] Larson, J., Menickelly, M., and Wild, S. M., “Derivative-Free Optimization Methods”, Acta Numer., 28 (2019), 287–404 | DOI | MR | Zbl
[17] Murray, R., Swenson, B., and Kar, S., “Revisiting Normalized Gradient Descent: Fast Evasion of Saddle Points”, IEEE Trans. Autom. Control., 64:11 (2019), 4818–4824 | DOI | MR | Zbl
[18] Nesterov, Yu. and Spokoiny, V., “Random Gradient-Free Minimization of Convex Functions”, Found. Comput. Math., 17:2 (2017), 527–566 | DOI | MR | Zbl
[19] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z. B., and Swami, A., Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, 2017, Practical Black-Box Attacks against Machine Learning
[20] Gadat, S. and Panloup, F., “Optimal Non-Asymptotic Analysis of the Ruppert – Polyak Averaging Stochastic Algorithm”, Stoch. Proc. Appl., 156:C (2023), 312–348 | DOI | MR | Zbl