Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2024_20_5_a14, author = {A. Y. Shamin and A. A. Rachkov}, title = {On the {Motion} of a {Vibrating} {Robot} on a {Horizontal} {Plane} with {Anisotropic} {Friction}}, journal = {Russian journal of nonlinear dynamics}, pages = {945--959}, publisher = {mathdoc}, volume = {20}, number = {5}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2024_20_5_a14/} }
TY - JOUR AU - A. Y. Shamin AU - A. A. Rachkov TI - On the Motion of a Vibrating Robot on a Horizontal Plane with Anisotropic Friction JO - Russian journal of nonlinear dynamics PY - 2024 SP - 945 EP - 959 VL - 20 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2024_20_5_a14/ LA - en ID - ND_2024_20_5_a14 ER -
A. Y. Shamin; A. A. Rachkov. On the Motion of a Vibrating Robot on a Horizontal Plane with Anisotropic Friction. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 5, pp. 945-959. http://geodesic.mathdoc.fr/item/ND_2024_20_5_a14/
[1] Zheng, M., Zhan, Q., Liu, J., and Cai, Y., “Control of a Spherical Robot: Path Following Based on Nonholonomic Kinematics and Dynamics”, Chin. J. Aeronaut., 24:3 (2011), 337–345 | DOI
[2] Bizyaev, I. A., Borisov, A. V., and Mamaev, I. S., “The Dynamics of Nonholonomic Systems Consisting of a Spherical Shell with a Moving Rigid Body Inside”, Regul. Chaotic Dyn., 19:2 (2014), 198–213 | DOI | MR | Zbl
[3] Kilin, A. A., Karavaev, Yu. L., and Klekovkin, A. V., “Kinematic Control of a High Manoeuvrable Mobile Spherical Robot with Internal Omni-Wheeled Platform”, Nelin. Dinam., 10:1 (2014), 113–126 (Russian) | DOI | MR | Zbl
[4] Kilin, A. A. and Karavaev, Yu. L., “The Kinematic Control Model for a Spherical Robot with an Unbalanced Internal Omniwheel Platform”, Nelin. Dinam., 10:4 (2014), 497–511 (Russian) | DOI | MR
[5] Ivanov, A. P., “On the Control of a Robot Ball Using Two Omniwheels”, Regul. Chaotic Dyn., 20:4 (2015), 441–448 | DOI | MR | Zbl
[6] Karavaev, Yu. L. and Kilin A. A., “The Dynamics and Control of a Spherical Robot with an Internal Omniwheel Platform”, Nelin. Dinam., 11:1 (2015), 187–204 (Russian) | DOI | MR | Zbl
[7] Lupekhina, I. V., Bezmen, P. A., and Yatsun, S. F., “Plane-Parallel Motion of a Vibrating Robot on a Horizontal Rough Surface”, Estestv. i Tekhn. Nauki, 2012, no. 4(60), 41–44 (Russian)
[8] Prikl. Mat. Mekh., 79:2 (2015), 196–209 (Russian) | DOI | MR | Zbl
[9] Yatsun, S. F. and Volkova, L. Yu., “Simulation of Dynamic Modes of Vibration Robot Moving along the Surface of the Viscous Resistance”, Spectekhnika i Svyaz, 2012, no. 3, 25–29 (Russian)
[10] Yatsun, S. F., Shevyakin, V. N., and Volkova, L. Yu., “Dynamics of Controlled Motion of a Three-Mass Robot on a Flat Surface”, Izv. RAS SamSC, 13:4-4 (2011), 1134–1138 (Russian)
[11] Volkova, L. Yu. and Jatsun, S. F., “Control of the Three-Mass Robot Moving in the Liquid Environment”, Nelin. Dinam., 7:4 (2011), 845–857 (Russian) | DOI | Zbl
[12] Ramodanov, S. M. and Tenenev, V. A., “Motion of a Body with Variable Distribution of Mass in a Boundless Viscous Liquid”, Nelin. Dinam., 7:3 (2011), 635–647 (Russian) | DOI | MR | Zbl
[13] Vetchanin, E. V., Mamaev, I. S., and Tenenev, V. A., “The Motion of a Body with Variable Mass Geometry in a Viscous Fluid”, Nelin. Dinam., 8:4 (2012), 815–836 (Russian) | DOI | MR | Zbl
[14] Izv. Akad. Nauk. Teoriya i Sistemy Upravleniya, 2009, no. 6, 150–158 (Russian) | DOI | MR | Zbl
[15] Izv. Akad. Nauk. Teoriya i Sistemy Upravleniya, 2007, no. 2, 65–71 (Russian) | DOI | MR | Zbl
[16] Izv. Akad. Nauk. Teoriya i Sistemy Upravleniya, 2006, no. 5, 157–167 (Russian) | DOI | Zbl
[17] Chernous'ko, F. L. and Bolotnik, N. N., “Mobile Robots Controlled by the Motion of Internal Bodies”, Tr. Inst. Mat. i Mekh. UrO RAN, 16:5 (2010), 213–222 (Russian)
[18] Prikl. Mat. Mekh., 72:2 (2008), 216–229 (Russian) | DOI | MR | Zbl
[19] Bardin, B. S. and Panev, A. S., “On Dynamics of a Rigid Body Moving on a Horizontal Plane by Means of Motion of an Internal Particle”, Vibroeng. Procedia, 8 (2016), 135–141
[20] Bardin, B. S. and Panev, A. S., “On the Motion of a Body with a Moving Internal Mass on a Rough Horizontal Plane”, Russian J. Nonlinear Dyn., 14:4 (2018), 519–542 | MR | Zbl
[21] Bardin, B. S. and Panev, A. S., “On Translational Rectilinear Motion of a Solid Body Carrying a Movable Inner Mass”, Sovr. Probl. Matem. Fundam. Napr., 65:4 (2019), 557–592 (Russian) | MR
[22] Bardin, B. S. and Rachkov, A. A., “On Periodic Motions of a Body with an Internal Moving Mass on a Rough Horizontal Plane in the Case of Anisotropic Friction”, J. Phys. Conf. Ser., 1959:1 (2021), Art. 012005, 8 pp.
[23] Dokl. Akad. Nauk, 470:4 (2016), 406–410 (Russian) | DOI | MR
[24] Bolotnik, N. N. and Chernousko, F. L., “New Dynamics and Control Problems for Locomotion Systems without External Propulsion”, Analytical Mechanics, Stability and Control: Proc. of the 11th Internat. Chetaev Conf. (Kazan, Jun 2017), 28–39 (Russian)
[25] Filippov, A. F., “Differential Equations with Discontinuous Right-Hand Side”, Mat. Sb. (N. S.), 51(93):1 (1960), 99–128 (Russian) | MR | Zbl