Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2024_20_5_a10, author = {V. O. Krivchenko and A. V. Gasnikov and D. A. Kovalev}, title = {Convex-Concave {Interpolation} and {Application} of {PEP} to the {Bilinear-Coupled} {Saddle} {Point} {Problem}}, journal = {Russian journal of nonlinear dynamics}, pages = {875--893}, publisher = {mathdoc}, volume = {20}, number = {5}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2024_20_5_a10/} }
TY - JOUR AU - V. O. Krivchenko AU - A. V. Gasnikov AU - D. A. Kovalev TI - Convex-Concave Interpolation and Application of PEP to the Bilinear-Coupled Saddle Point Problem JO - Russian journal of nonlinear dynamics PY - 2024 SP - 875 EP - 893 VL - 20 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2024_20_5_a10/ LA - en ID - ND_2024_20_5_a10 ER -
%0 Journal Article %A V. O. Krivchenko %A A. V. Gasnikov %A D. A. Kovalev %T Convex-Concave Interpolation and Application of PEP to the Bilinear-Coupled Saddle Point Problem %J Russian journal of nonlinear dynamics %D 2024 %P 875-893 %V 20 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2024_20_5_a10/ %G en %F ND_2024_20_5_a10
V. O. Krivchenko; A. V. Gasnikov; D. A. Kovalev. Convex-Concave Interpolation and Application of PEP to the Bilinear-Coupled Saddle Point Problem. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 5, pp. 875-893. http://geodesic.mathdoc.fr/item/ND_2024_20_5_a10/
[1] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y., “Generative Adversarial Networks”, Commun. ACM, 63:11 (2020), 139–144 | DOI
[2] Li, S., Wu, Y., Cui, X., Dong, H., Fang, F., and Russell, S., “Robust Multi-Agent Reinforcement Learning via Minimax Deep Deterministic Policy Gradient”, Proc. AAAI Conf. on Artificial Intelligence, 33:01 (2019), 4213–4220 | DOI | MR
[3] Zhang, G., Bao, X., Lessard, L., and Grosse, R., “A Unified Analysis of First-Order Methods for Smooth Games via Integral Quadratic Constraints”, J. Mach. Learn. Res., 22(103) (2021), 1–39 | MR
[4] Zhang, G., Wang, Y., Lessard, L., and Grosse, R., “Near-Optimal Local Convergence of Alternating Gradient Descent-Ascent for Minimax Optimization”, Proc. of the 25th Internat. Conf. on Artificial Intelligence and Statistics (PMLR, Valencia, Spain, Mar 2022), 7659–7679
[5] Lee, J., Cho, H., and Yun, C., , 2024, 76 pp. arXiv:2402.10475 [math.OC]
[6] Drori, Y. and Teboulle, M., “Performance of First-Order Methods for Smooth Convex Minimization: A Novel Approach”, Math. Program., 145:1–2 (2014), 451–482 | DOI | MR | Zbl
[7] Lessard, L., Recht, B., and Packard, A., “Analysis and Design of Optimization Algorithms via Integral Quadratic Constraints”, SIAM J. Optim., 26:1 (2016), 57–95 | DOI | MR | Zbl
[8] Taylor, A., Van Scoy, B., and Lessard, L., “Lyapunov Functions for First-Order Methods: Tight Automated Convergence Guarantees”, Proc. of the 35th Internat. Conf. on Machine Learning (Stockholm, Sweden, Jul 2018), 4897–4906
[9] Rubbens, A., Bousselmi, N., Colla, S., and Hendrickx, J. M., “Interpolation Constraints for Computing Worst-Case Bounds in Performance Estimation Problems”, Proc. of the 62nd IEEE Conf. on Decision and Control (CDC, Marina Bay Sands, Singapore, Dec 2023), 3015–3022
[10] Taylor, A. B., Hendrickx, J. M., and Glineur, F., “Smooth Strongly Convex Interpolation and Exact Worst-Case Performance of First-Order Methods”, Math. Program., 161:1–2 (2017), 307–345 | DOI | MR | Zbl
[11] Kim, D. and Fessler, J. A., “Optimized First-Order Methods for Smooth Convex Minimization”, Math. Program., 159:1–2 (2016), 81–107 | DOI | MR | Zbl
[12] Zamani, M., Abbaszadehpeivasti, H., and de Klerk, E., “Convergence Rate Analysis of the Gradient Descent-Ascent Method for Convex-Concave Saddle-Point Problems”, Optim. Methods Softw., 39:5 (2024), 967–989 | DOI | MR | Zbl
[13] Dragomir, R. A., Taylor, A. B., d'Aspremont, A., and Bolte, J., “Optimal Complexity and Certification of Bregman First-Order Methods”, Math. Program., 194:1–2 (2022), 41–83 | DOI | MR | Zbl
[14] Rockafellar, R. T., “Characterization of the Subdifferentials of Convex Functions”, Pacific J. Math., 17:3 (1966), 497–510 | DOI | MR | Zbl
[15] Artstein-Avidan, S., Sadovsky, S., and Wyczesany, K., “A Rockafellar-Type Theorem for Non-Traditional Costs”, Adv. Math., 395 (2022), 108157, 22 pp. | DOI | MR | Zbl
[16] Bousselmi, N., Hendrickx, J. M., and Glineur, F., “Interpolation Conditions for Linear Operators and Applications to Performance Estimation Problems”, SIAM J. Optim., 34:3 (2024), 3033–3063 | DOI | MR | Zbl
[17] Rubbens, A. and Hendrickx, J. M., , 2024, 42 pp. arXiv:2405.08405 [math.OC]
[18] Zhang, Y. and Xiao, L., “Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization”, J. Mach. Learn. Res., 18:1 (2017), 2939–2980 | MR
[19] Du, S. S., Chen, J., Li, L., Xiao, L., and Zhou, D., “Stochastic Variance Reduction Methods for Policy Evaluation”, Proc. of the 34th Internat. Conf. on Machine Learning (ICML, Sydney, NSW, Australia, Aug 2017), 1049–1058
[20] Salim, A., Condat, L., Kovalev, D., and Richtárik, P., “An Optimal Algorithm for Strongly Convex Minimization under Affine Constraints”, Proc. of the 25th Internat. Conf. on Artificial Intelligence and Statistics (AISTATS, Valencia, Spain, Mar 2022), 4482–4498
[21] Kovalev, D., Gasnikov, A., and Richtárik, P., “Accelerated Primal-Dual Gradient Method for Smooth and Convex-Concave Saddle-Point Problems with Bilinear Coupling”, Proc. of the 36th Internat. Conf. on Neural Information Processing Systems (NIPS, New Orleans, La., USA, 2022), Art. 1579, 13 pp.
[22] Goujaud, B., Dieuleveut, A., and Taylor, A., “On Fundamental Proof Structures in First-Order Optimization”, Proc. of the 62nd IEEE Conf. on Decision and Control (CDC, Marina Bay Sands, Singapore, Dec 2023), 3023–3030 | MR