Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2024_20_5_a1, author = {A. Al Badr and K. Almaghout}, title = {Navigating {Narrow} {Margins:} {A} {Behavior-Based} {Control} {Approach} for {Autonomous} {Mining} {Vehicles} in {Confined} {Underground} {Environments}}, journal = {Russian journal of nonlinear dynamics}, pages = {709--726}, publisher = {mathdoc}, volume = {20}, number = {5}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2024_20_5_a1/} }
TY - JOUR AU - A. Al Badr AU - K. Almaghout TI - Navigating Narrow Margins: A Behavior-Based Control Approach for Autonomous Mining Vehicles in Confined Underground Environments JO - Russian journal of nonlinear dynamics PY - 2024 SP - 709 EP - 726 VL - 20 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2024_20_5_a1/ LA - en ID - ND_2024_20_5_a1 ER -
%0 Journal Article %A A. Al Badr %A K. Almaghout %T Navigating Narrow Margins: A Behavior-Based Control Approach for Autonomous Mining Vehicles in Confined Underground Environments %J Russian journal of nonlinear dynamics %D 2024 %P 709-726 %V 20 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2024_20_5_a1/ %G en %F ND_2024_20_5_a1
A. Al Badr; K. Almaghout. Navigating Narrow Margins: A Behavior-Based Control Approach for Autonomous Mining Vehicles in Confined Underground Environments. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 5, pp. 709-726. http://geodesic.mathdoc.fr/item/ND_2024_20_5_a1/
[1] Xiao, W., Liu, M., and Chen, X., “Research Status and Development Trend of Underground Intelligent Load-Haul-Dump Vehicle: A Comprehensive Review”, Appl. Sci., 12:18 (2022), Art. 9290, 24 pp.
[2] Krasniuk, S., Lemke, M. K., Hassoun, A., Hege, A., and Crizzle, A. M., “Improving Truck Stop Environments to Support Long-Haul Truck Driver Safety and Health: A Scoping Review”, Transp. Res. A Policy Pract., 185 (2024), Art. 104123, 20 pp. | DOI
[3] Long, M., Schafrik, S., Kolapo, P., Agioutantis, Z., and Sottile, J., “Equipment and Operations Automation in Mining: A Review”, Machines, 12:10 (2024), Art. 713, 17 pp. | DOI
[4] Kim, H. and Choi, Y., “Location Estimation of Autonomous Driving Robot and 3D Tunnel Mapping in Underground Mines Using Pattern Matched LiDAR Sequential Images”, Int. J. Min. Sci. Technol., 31:5 (2021), 779–788 | DOI
[5] Janiszewski, M., Torkan, M., Uotinen, L., and Rinne, M., “Rapid Photogrammetry with a 360-Degree Camera for Tunnel Mapping”, Remote Sens., 14:21 (2022), Art. 5494, 8 pp. | DOI
[6] Li, H., Savkin, A. V., and Vucetic, B., “Autonomous Area Exploration and Mapping in Underground Mine Environments by Unmanned Aerial Vehicles”, Robotica, 38:3 (2020), 442–456 | DOI
[7] Papachristos, C., Khattak, S., Mascarich, F., and Alexis, K., “Autonomous Navigation and Mapping in Underground Mines Using Aerial Robots”, Proc. of the IEEE Aerosp. Conf. (Big Sky, Mont., USA, Mar 2019), 8 pp.
[8] Mascarich, F., Khattak, S., Papachristos, C., and Alexis, K., “A Multi-Modal Mapping Unit for Autonomous Exploration and Mapping of Underground Tunnels”, Proc. of the IEEE Aerosp. Conf. (Big Sky, Mont., USA, Mar 2018), 7 pp.
[9] Roberts, J. M., Duff, E. S., and Corke, P. I., “Reactive Navigation and Opportunistic Localization for Autonomous Underground Mining Vehicles”, Inf. Sci., 145:1–2 (2002), 127–146 | DOI | Zbl
[10] Larsson, J., Appelgren, J., Marshall, J., and Barfoot, T., “Atlas Copco Infrastructureless Guidance System for High-Speed Autonomous Underground Tramming”, Proc. of the 5th Intrenat. Conf. and Exhibition on Mass Mining (Luleå, Sweden, Jun 2008), 585–594
[11] Jacobson, A., Zeng, F., Smith, D., Boswell, N., Peynot, T., and Milford, M., “What Localizes Beneath: A Metric Multisensor Localization and Mapping System for Autonomous Underground Mining Vehicles”, J. Field Robot., 38:1 (2021), 5–27 | DOI
[12] Kim, H. and Choi, Y., “Comparison of Three Location Estimation Methods of an Autonomous Driving Robot for Underground Mines”, Appl. Sci., 10:14 (2020), Art. 4831, 17 pp.
[13] Liu, L., Wang, X., Yang, X., Liu, H., Li, J., and Wang, P., “Path Planning Techniques for Mobile Robots: Review and Prospect”, Expert Syst. Appl., 227:C (2023), Art. 120254, 30 pp.
[14] Qin, H., Shao, S., Wang, T., Yu, X., Jiang, Y., and Cao, Z., “Review of Autonomous Path Planning Algorithms for Mobile Robots”, Drones, 7:3 (2023), Art. 211, 37 pp.
[15] Dijkstra, E. W., “A Note on Two Problems in Connexion with Graphs”, Numer. Math., 1:1 (1959), 269–271 | DOI | MR | Zbl
[16] Hart, P. E., Nilsson, N. J., and Raphael, B., “A Formal Basis for the Heuristic Determination of Minimum Cost Paths”, IEEE Trans. Syst. Sci. Cybern., 4:2 (1968), 100–107 | DOI | MR
[17] Gautam, A., He, Y., and Lin, X., “An Overview of Motion-Planning Algorithms for Autonomous Ground Vehicles with Various Applications”, SAE Int. J. Veh. Dyn., Stab., and NVH, 8:2 (2024), 179–213 | DOI
[18] Zhang, C., Yang, X., Zhou, R., and Guo, Z., “A Path Planning Method Based on Improved A* and Fuzzy Control DWA of Underground Mine Vehicles”, Appl. Sci., 14:7 (2024), Art. 3103, 13 pp.
[19] Jiang, Y., Peng, P., Wang, L., Wang, J., Wu, J., and Liu, Y., “LiDAR-Based Local Path Planning Method for Reactive Navigation in Underground Mines”, Remote Sens., 15:2 (2023), Art. 309, 24 pp. | MR
[20] Wang, H., Li, G., Hou, J., Chen, L., and Hu, N., “A Path Planning Method for Underground Intelligent Vehicles Based on an Improved RRT* Algorithm”, Electron., 11:3 (2022), Art. 294, 18 pp.
[21] Funke, J., Theodosis, P., Hindiyeh, R., Stanek, G., Kritatakirana, K., Gerdes, C., Langer, D., Hernandez, M., Müller-Bessler, B., and Huhnke, B., “Up to the Limits: Autonomous Audi TTS”, Proc. of the IEEE Intelligent Vehicles Symp. (Madrid, Spain, Jun 2012), 541–547
[22] Bender, P., Ziegler, J., and Stiller, C., “Lanelets: Efficient Map Representation for Autonomous Driving”, Proc. of the IEEE Intell. Veh. Symp. (Ypsilanti, Mich., USA, Jun 2014), 420–425
[23] Farag, W., “Complex Trajectory Tracking Using PID Control for Autonomous Driving”, Int. J. Intell. Transp. Syst. Res., 18:2 (2020), 356–366
[24] Suzuki, M. and Yahagi, S., “Extended Intelligent PI Control for Vehicle Yaw-Rate Control of Autonomous Driving”, Proc. of the 61st Annual Conf. of the Society of Instrument and Control Engineers (SICE, Kumamoto, Japan, Sep 2022), 1089–1095
[25] Samuel, M., Hussein, M., and Mohamad, M. B., “A Review of Some Pure-Pursuit Based Path Tracking Techniques for Control of Autonomous Vehicle”, Int. J. Comput. Appl., 135:1 (2016), 35–38
[26] Jnadi, A., Almaghout, K., and Pronin, A., “Performance Evaluation of PID, Stanley, and Hybrid (PID with Stanley) Control Algorithms on Bitum Line-Follower Road Coaster”, Proc. of the Internat. Ural Conf. on Electrical Power Engineering (UralCon, Magnitogorsk, Russia, Sep 2024), 770–774
[27] Chen, S. and Chen, H., “MPC-Based Path Tracking with PID Speed Control for Autonomous Vehicles”, IOP Conf. Ser. Mater. Sci. Eng., 892:1 (2020), Art. 012034, 15 pp. | MR
[28] Guidolini, R., De Souza, A. F., Mutz, F., and Badue, C., “Neural-Based Model Predictive Control for Tackling Steering Delays of Autonomous Cars”, Proc. of the Internat. Joint Conf. on Neural Networks (IJCNN, Anchorage, AK, USA, May 2017), 4324–4331
[29] Bakambu, J. N. and Polotski, V., “Autonomous System for Navigation and Surveying in Underground Mines”, J. Field Robot., 24:10 (2007), 829–847 | DOI
[30] Azizi, M. and Tarshizi, E., “Autonomous Control and Navigation of a Lab-Scale Underground Mining Haul Truck Using LiDAR Sensor and Triangulation: Feasibility Study”, 52nd Annual Meeting on IEEE Industry Application Society (IAS, Portland, Ore., USA, Oct 2016), Art. 7731923, 6 pp.
[31] Agioutantis, Z., Androulakis, V., Schafrik, S., and Sottile, J., “LiDAR Navigation in Underground Openings”, Expanding Underground: Knowledge and Passion to Make a Positive Impact on the World, eds. G. Anagnostou, A. Benardos, V. P. Marinos, CRC, London, 2023, 2373–2380, 3528 pp. | DOI
[32] Kim, H. and Choi, Y., “Autonomous Driving Robot That Drives and Returns along a Planned Route in Underground Mines by Recognizing Road Signs”, Appl. Sci., 11:21 (2021), Art. 10235, 13 pp.
[33] Wang, D. and Qi, F., “Trajectory Planning for a Four-Wheel-Steering Vehicle”, Proc. of the IEEE Internat. Conf. on Robotics and Automation (Seoul, Korea, May 2001), 3320–3325, Cat. No. 01CH37164
[34] Frank, C., Modern Robotics: Mechanics, Planning, and Control, Cambridge Univ. Press, Cambridge, 2017, 544 pp.
[35] Siciliano, B., Sciavicco, L., Villani, L., and Oriolo, G., “Mobile Robots”, Robotics: Modelling, Planning and Control, Springer, London, 2010, 469–521, ix, 632 pp.
[36] Panigrahi, P. K. and Bisoy, S. K., “Localization Strategies for Autonomous Mobile Robots: A Review”, J. King Saud Univ. Comput. Inf. Sci., 34:8 (2022), 6019–6039
[37] Liu, Y., Wang, S., Xie, Y., Xiong, T., and Wu, M., “A Review of Sensing Technologies for Indoor Autonomous Mobile Robots”, Sensors, 24:4 (2024), Art. 1222, 31 pp.
[38] Brown, R. G., Introduction to Random Signal Analysis and Kalman Filtering, 4th ed., Wiley, New York, 1983, 347 pp.
[39] Haas, J. K., A History of the Unity Game Engine, PhD Thesis, Worcester Polytechnic Institute, Worcester, Mass., 2014, 43 pp.
[40] Patel, V. V., “Ziegler – Nichols Tuning Method”, Reson., 25:10 (2020), 1385–1397 | DOI
[41] Macenski, S., Foote, T., Gerkey, B., Lalancette, C., and Woodall, W., “Robot Operating System 2: Design, Architecture, and Uses in the Wild”, Sci. Robot., 7:66 (2022), eabm6074, 13 pp. | DOI
[42] Kam, H. R., Lee, S. H., Park, T., and Kim, C. H., “RViz: A Toolkit for Real Domain Data Visualization”, Telecommun. Syst., 60:2 (2015), 337–345 | DOI