Navigating Narrow Margins: A Behavior-Based Control Approach for Autonomous Mining Vehicles in Confined Underground Environments
Russian journal of nonlinear dynamics, Tome 20 (2024) no. 5, pp. 709-726.

Voir la notice de l'article provenant de la source Math-Net.Ru

Autonomous navigation in underground mining poses a unique set of challenges, from GPS unavailability and high dust levels that compromise visual sensors to feature-poor environments that complicate localization and narrow tunnels that restrict vehicle movement. To address these issues, this paper presents a novel behavior-based control approach, integrating wall-following for lateral stability as the vehicle progresses toward designated positions. The path to these targets is generated by an A* algorithm, ensuring efficient route planning within confined spaces. For localization, an Extended Kalman Filter (EKF) fuses data from wheel odometry and an Inertial Measurement Unit (IMU), providing robust state estimation in the absence of GPS. The proposed system leverages a four-wheel steering mechanism with negative-phase control and is equipped with 3D LiDAR, ultrasonic sensors, wheel encoders, and an IMU for enhanced situational awareness and control. Simulation results validate the system’s ability to achieve precise navigation in challenging underground environments, even within tunnels that allow minimal clearance.
Keywords: autonomous navigation, behavior-based control, wall-following, four-wheel steering, extended Kalman filter, path planning, haul trucks, underground mining
@article{ND_2024_20_5_a1,
     author = {A. Al Badr and K. Almaghout},
     title = {Navigating {Narrow} {Margins:} {A} {Behavior-Based} {Control} {Approach} for {Autonomous} {Mining} {Vehicles} in {Confined} {Underground} {Environments}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {709--726},
     publisher = {mathdoc},
     volume = {20},
     number = {5},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2024_20_5_a1/}
}
TY  - JOUR
AU  - A. Al Badr
AU  - K. Almaghout
TI  - Navigating Narrow Margins: A Behavior-Based Control Approach for Autonomous Mining Vehicles in Confined Underground Environments
JO  - Russian journal of nonlinear dynamics
PY  - 2024
SP  - 709
EP  - 726
VL  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2024_20_5_a1/
LA  - en
ID  - ND_2024_20_5_a1
ER  - 
%0 Journal Article
%A A. Al Badr
%A K. Almaghout
%T Navigating Narrow Margins: A Behavior-Based Control Approach for Autonomous Mining Vehicles in Confined Underground Environments
%J Russian journal of nonlinear dynamics
%D 2024
%P 709-726
%V 20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2024_20_5_a1/
%G en
%F ND_2024_20_5_a1
A. Al Badr; K. Almaghout. Navigating Narrow Margins: A Behavior-Based Control Approach for Autonomous Mining Vehicles in Confined Underground Environments. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 5, pp. 709-726. http://geodesic.mathdoc.fr/item/ND_2024_20_5_a1/

[1] Xiao, W., Liu, M., and Chen, X., “Research Status and Development Trend of Underground Intelligent Load-Haul-Dump Vehicle: A Comprehensive Review”, Appl. Sci., 12:18 (2022), Art. 9290, 24 pp.

[2] Krasniuk, S., Lemke, M. K., Hassoun, A., Hege, A., and Crizzle, A. M., “Improving Truck Stop Environments to Support Long-Haul Truck Driver Safety and Health: A Scoping Review”, Transp. Res. A Policy Pract., 185 (2024), Art. 104123, 20 pp. | DOI

[3] Long, M., Schafrik, S., Kolapo, P., Agioutantis, Z., and Sottile, J., “Equipment and Operations Automation in Mining: A Review”, Machines, 12:10 (2024), Art. 713, 17 pp. | DOI

[4] Kim, H. and Choi, Y., “Location Estimation of Autonomous Driving Robot and 3D Tunnel Mapping in Underground Mines Using Pattern Matched LiDAR Sequential Images”, Int. J. Min. Sci. Technol., 31:5 (2021), 779–788 | DOI

[5] Janiszewski, M., Torkan, M., Uotinen, L., and Rinne, M., “Rapid Photogrammetry with a 360-Degree Camera for Tunnel Mapping”, Remote Sens., 14:21 (2022), Art. 5494, 8 pp. | DOI

[6] Li, H., Savkin, A. V., and Vucetic, B., “Autonomous Area Exploration and Mapping in Underground Mine Environments by Unmanned Aerial Vehicles”, Robotica, 38:3 (2020), 442–456 | DOI

[7] Papachristos, C., Khattak, S., Mascarich, F., and Alexis, K., “Autonomous Navigation and Mapping in Underground Mines Using Aerial Robots”, Proc. of the IEEE Aerosp. Conf. (Big Sky, Mont., USA, Mar 2019), 8 pp.

[8] Mascarich, F., Khattak, S., Papachristos, C., and Alexis, K., “A Multi-Modal Mapping Unit for Autonomous Exploration and Mapping of Underground Tunnels”, Proc. of the IEEE Aerosp. Conf. (Big Sky, Mont., USA, Mar 2018), 7 pp.

[9] Roberts, J. M., Duff, E. S., and Corke, P. I., “Reactive Navigation and Opportunistic Localization for Autonomous Underground Mining Vehicles”, Inf. Sci., 145:1–2 (2002), 127–146 | DOI | Zbl

[10] Larsson, J., Appelgren, J., Marshall, J., and Barfoot, T., “Atlas Copco Infrastructureless Guidance System for High-Speed Autonomous Underground Tramming”, Proc. of the 5th Intrenat. Conf. and Exhibition on Mass Mining (Luleå, Sweden, Jun 2008), 585–594

[11] Jacobson, A., Zeng, F., Smith, D., Boswell, N., Peynot, T., and Milford, M., “What Localizes Beneath: A Metric Multisensor Localization and Mapping System for Autonomous Underground Mining Vehicles”, J. Field Robot., 38:1 (2021), 5–27 | DOI

[12] Kim, H. and Choi, Y., “Comparison of Three Location Estimation Methods of an Autonomous Driving Robot for Underground Mines”, Appl. Sci., 10:14 (2020), Art. 4831, 17 pp.

[13] Liu, L., Wang, X., Yang, X., Liu, H., Li, J., and Wang, P., “Path Planning Techniques for Mobile Robots: Review and Prospect”, Expert Syst. Appl., 227:C (2023), Art. 120254, 30 pp.

[14] Qin, H., Shao, S., Wang, T., Yu, X., Jiang, Y., and Cao, Z., “Review of Autonomous Path Planning Algorithms for Mobile Robots”, Drones, 7:3 (2023), Art. 211, 37 pp.

[15] Dijkstra, E. W., “A Note on Two Problems in Connexion with Graphs”, Numer. Math., 1:1 (1959), 269–271 | DOI | MR | Zbl

[16] Hart, P. E., Nilsson, N. J., and Raphael, B., “A Formal Basis for the Heuristic Determination of Minimum Cost Paths”, IEEE Trans. Syst. Sci. Cybern., 4:2 (1968), 100–107 | DOI | MR

[17] Gautam, A., He, Y., and Lin, X., “An Overview of Motion-Planning Algorithms for Autonomous Ground Vehicles with Various Applications”, SAE Int. J. Veh. Dyn., Stab., and NVH, 8:2 (2024), 179–213 | DOI

[18] Zhang, C., Yang, X., Zhou, R., and Guo, Z., “A Path Planning Method Based on Improved A* and Fuzzy Control DWA of Underground Mine Vehicles”, Appl. Sci., 14:7 (2024), Art. 3103, 13 pp.

[19] Jiang, Y., Peng, P., Wang, L., Wang, J., Wu, J., and Liu, Y., “LiDAR-Based Local Path Planning Method for Reactive Navigation in Underground Mines”, Remote Sens., 15:2 (2023), Art. 309, 24 pp. | MR

[20] Wang, H., Li, G., Hou, J., Chen, L., and Hu, N., “A Path Planning Method for Underground Intelligent Vehicles Based on an Improved RRT* Algorithm”, Electron., 11:3 (2022), Art. 294, 18 pp.

[21] Funke, J., Theodosis, P., Hindiyeh, R., Stanek, G., Kritatakirana, K., Gerdes, C., Langer, D., Hernandez, M., Müller-Bessler, B., and Huhnke, B., “Up to the Limits: Autonomous Audi TTS”, Proc. of the IEEE Intelligent Vehicles Symp. (Madrid, Spain, Jun 2012), 541–547

[22] Bender, P., Ziegler, J., and Stiller, C., “Lanelets: Efficient Map Representation for Autonomous Driving”, Proc. of the IEEE Intell. Veh. Symp. (Ypsilanti, Mich., USA, Jun 2014), 420–425

[23] Farag, W., “Complex Trajectory Tracking Using PID Control for Autonomous Driving”, Int. J. Intell. Transp. Syst. Res., 18:2 (2020), 356–366

[24] Suzuki, M. and Yahagi, S., “Extended Intelligent PI Control for Vehicle Yaw-Rate Control of Autonomous Driving”, Proc. of the 61st Annual Conf. of the Society of Instrument and Control Engineers (SICE, Kumamoto, Japan, Sep 2022), 1089–1095

[25] Samuel, M., Hussein, M., and Mohamad, M. B., “A Review of Some Pure-Pursuit Based Path Tracking Techniques for Control of Autonomous Vehicle”, Int. J. Comput. Appl., 135:1 (2016), 35–38

[26] Jnadi, A., Almaghout, K., and Pronin, A., “Performance Evaluation of PID, Stanley, and Hybrid (PID with Stanley) Control Algorithms on Bitum Line-Follower Road Coaster”, Proc. of the Internat. Ural Conf. on Electrical Power Engineering (UralCon, Magnitogorsk, Russia, Sep 2024), 770–774

[27] Chen, S. and Chen, H., “MPC-Based Path Tracking with PID Speed Control for Autonomous Vehicles”, IOP Conf. Ser. Mater. Sci. Eng., 892:1 (2020), Art. 012034, 15 pp. | MR

[28] Guidolini, R., De Souza, A. F., Mutz, F., and Badue, C., “Neural-Based Model Predictive Control for Tackling Steering Delays of Autonomous Cars”, Proc. of the Internat. Joint Conf. on Neural Networks (IJCNN, Anchorage, AK, USA, May 2017), 4324–4331

[29] Bakambu, J. N. and Polotski, V., “Autonomous System for Navigation and Surveying in Underground Mines”, J. Field Robot., 24:10 (2007), 829–847 | DOI

[30] Azizi, M. and Tarshizi, E., “Autonomous Control and Navigation of a Lab-Scale Underground Mining Haul Truck Using LiDAR Sensor and Triangulation: Feasibility Study”, 52nd Annual Meeting on IEEE Industry Application Society (IAS, Portland, Ore., USA, Oct 2016), Art. 7731923, 6 pp.

[31] Agioutantis, Z., Androulakis, V., Schafrik, S., and Sottile, J., “LiDAR Navigation in Underground Openings”, Expanding Underground: Knowledge and Passion to Make a Positive Impact on the World, eds. G. Anagnostou, A. Benardos, V. P. Marinos, CRC, London, 2023, 2373–2380, 3528 pp. | DOI

[32] Kim, H. and Choi, Y., “Autonomous Driving Robot That Drives and Returns along a Planned Route in Underground Mines by Recognizing Road Signs”, Appl. Sci., 11:21 (2021), Art. 10235, 13 pp.

[33] Wang, D. and Qi, F., “Trajectory Planning for a Four-Wheel-Steering Vehicle”, Proc. of the IEEE Internat. Conf. on Robotics and Automation (Seoul, Korea, May 2001), 3320–3325, Cat. No. 01CH37164

[34] Frank, C., Modern Robotics: Mechanics, Planning, and Control, Cambridge Univ. Press, Cambridge, 2017, 544 pp.

[35] Siciliano, B., Sciavicco, L., Villani, L., and Oriolo, G., “Mobile Robots”, Robotics: Modelling, Planning and Control, Springer, London, 2010, 469–521, ix, 632 pp.

[36] Panigrahi, P. K. and Bisoy, S. K., “Localization Strategies for Autonomous Mobile Robots: A Review”, J. King Saud Univ. Comput. Inf. Sci., 34:8 (2022), 6019–6039

[37] Liu, Y., Wang, S., Xie, Y., Xiong, T., and Wu, M., “A Review of Sensing Technologies for Indoor Autonomous Mobile Robots”, Sensors, 24:4 (2024), Art. 1222, 31 pp.

[38] Brown, R. G., Introduction to Random Signal Analysis and Kalman Filtering, 4th ed., Wiley, New York, 1983, 347 pp.

[39] Haas, J. K., A History of the Unity Game Engine, PhD Thesis, Worcester Polytechnic Institute, Worcester, Mass., 2014, 43 pp.

[40] Patel, V. V., “Ziegler – Nichols Tuning Method”, Reson., 25:10 (2020), 1385–1397 | DOI

[41] Macenski, S., Foote, T., Gerkey, B., Lalancette, C., and Woodall, W., “Robot Operating System 2: Design, Architecture, and Uses in the Wild”, Sci. Robot., 7:66 (2022), eabm6074, 13 pp. | DOI

[42] Kam, H. R., Lee, S. H., Park, T., and Kim, C. H., “RViz: A Toolkit for Real Domain Data Visualization”, Telecommun. Syst., 60:2 (2015), 337–345 | DOI