Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2024_20_4_a9, author = {V. S. Popov and L. I. Mogilevich and A. A. Popova}, title = {Nonlinear {Oscillations} of a {Plate} {Resting} on a {Nonlinear} {Elastic} {Foundation} and {Forming} the {Bottom} of a {Plane} {Channel} {Filled} with a {Viscous} {Gas}}, journal = {Russian journal of nonlinear dynamics}, pages = {581--599}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2024_20_4_a9/} }
TY - JOUR AU - V. S. Popov AU - L. I. Mogilevich AU - A. A. Popova TI - Nonlinear Oscillations of a Plate Resting on a Nonlinear Elastic Foundation and Forming the Bottom of a Plane Channel Filled with a Viscous Gas JO - Russian journal of nonlinear dynamics PY - 2024 SP - 581 EP - 599 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2024_20_4_a9/ LA - en ID - ND_2024_20_4_a9 ER -
%0 Journal Article %A V. S. Popov %A L. I. Mogilevich %A A. A. Popova %T Nonlinear Oscillations of a Plate Resting on a Nonlinear Elastic Foundation and Forming the Bottom of a Plane Channel Filled with a Viscous Gas %J Russian journal of nonlinear dynamics %D 2024 %P 581-599 %V 20 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2024_20_4_a9/ %G en %F ND_2024_20_4_a9
V. S. Popov; L. I. Mogilevich; A. A. Popova. Nonlinear Oscillations of a Plate Resting on a Nonlinear Elastic Foundation and Forming the Bottom of a Plane Channel Filled with a Viscous Gas. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 4, pp. 581-599. http://geodesic.mathdoc.fr/item/ND_2024_20_4_a9/
[1] Gorshkov, A. G., Morozov, V. I., Ponomarev, A. T., and Shklyarchuk, F. N., Aerohydroelasticity of Structures, Fizmatlit, Moscow, 2000, 592 pp. (Russian)
[2] Païdoussis, M. P., Fluid-Structure Interactions: Slender Structures and Axial Flow: Vol. 2, 2nd ed., Acad. Press, London, xvii, 942 pp.
[3] Païdoussis, M. P., “Dynamics of Cylindrical Structures in Axial Flow: A Review”, J. Fluids Struct., 107 (2021), Art. No. 103374
[4] Lamb, H., “On the Vibrations of an Elastic Plate in Contact with Water”, Proc. R. Soc. Lond. Ser. A, 98:690 (1920), 205–216 | DOI
[5] Amabili, M. and Kwak, M. K., “Free Vibrations of Circular Plates Coupled with Liquids: Revising the Lamb Problem”, J. Fluids Struct., 10:7 (1996), 743–761 | DOI
[6] Zh. Tekhn. Fiz., 70:12 (2000), 1–5 (Russian) | DOI
[7] Mohapatra, S. C. and Sahoo, T., “Surface Gravity Wave Interaction with Elastic Bottom”, Appl. Ocean Res., 33:1 (2011), 31–40 | DOI
[8] Hossain, S., Das, A., and De, S., “The Influence of Flexible Bottom on Wave Generation by an Oscillatory Disturbance in the Presence of Surface Tension”, Geophys. Astrophys. Fluid Dyn., 117:3 (2023), 177–212 | DOI | MR | Zbl
[9] Rashidi-Juybari, S., Fathi, A., and Afrasiab, H., “Hydroelastic Analysis of Surface Gravity Wave Interacting with Elastic Plate Resting on a Linear Viscoelastic Foundation”, Mar. Syst. Ocean Technol., 15:4 (2020), 286–298 | DOI
[10] Sree, D., Law, A. W.-K., and Shen, H. H., “An Experimental Study on Surface Wave Modulation due to Viscoelastic Bottom”, Proc. of the 4th Internat. Conf. in Ocean Engineering (ICOE'2018): Vol. 2, Lecture Notes in Civil Eng., 23, eds. K. Murali, V. Sriram, A. Samad, N. Saha, Springer, Singapore, 2019, 199–206 | DOI
[11] Akrish, G., Rabinovitch, O., and Agnon, Y., “Hydroelasticity and Nonlinearity in the Interaction between Water Waves and an Elastic Wall”, J. Fluid Mech., 845 (2018), 293–320 | DOI | MR | Zbl
[12] Kostikov, V., Hayatdavoodi, M., and Ertekin, R. C., “Hydroelastic Interaction of Nonlinear Waves with Floating Sheets”, Theor. Comput. Fluid Dyn., 35 (2021), 515–537 | DOI | MR
[13] Bochkarev, S. A. and Lekomtsev, S. V., “Effect of Boundary Conditions on the Hydroelastic Vibrations of Two Parallel Plates”, Solid State Phenom., 243 (2016), 51–58 | DOI
[14] Velmisov, P. A. and Pokladova, Yu. V., “Mathematical Modelling of the “Pipeline – Pressure Sensor” System”, J. Phys. Conf. Ser., 1353 (2019), Art. No. 012085, 6 pp. | DOI
[15] Kamenskikh, A. O. and Lekomtsev, S. V., “Control of Hydro-Elastic Vibrations of Two Parallel Plates by Electromagnetic Coil”, AIP Conf. Proc., 2239 (2020), Art. No. 020020, 10 pp.
[16] Zavyalova, K. N., Shishmarev, K. A., and Korobkin, A. A., “The Response of a Poroelastic Ice Plate to an External Pressure”, J. Sib. Fed. Univ. Math. Phys., 14:1 (2021), 87–97 | DOI | MR | Zbl
[17] Kheiri, M., Païdoussis, M. P., Costa Del Pozo, G., and Amabili, M., “Dynamics of a Pipe Conveying Fluid Flexibly Restrained at the Ends”, J. Fluids Struct., 49 (2014), 360–385 | DOI
[18] Velmisov, P. A., Tamarova, Yu. A., and Pokladova, Yu. V., “Investigation of the Dynamic Stability of Bending-Torsional Deformations of the Pipeline”, Zh. Srednevolzhsk. Mat. Obshch., 23:1 (2021), 72–81 (Russian) | Zbl
[19] Korenkov, A. N., “Solitary Waves on a Cylinder Shell with Liquid”, Vestn. St.-Petersb. Univ. Math., 52:1 (2019), 92–101 | DOI | MR | Zbl
[20] Kozlovsky, Y., “Vibration of Plates in Contact with Viscous Fluid: Extension of Lamb's Model”, J. Sound Vibration, 326:1–2 (2009), 332–339 | DOI
[21] Womersley, J. R., “Oscillatory Motion of a Viscous Liquid in a Thin-Walled Elastic Tube: 1. The Linear Approximation for Long Waves”, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science (7), 46:373 (1955), 199–221 | DOI | MR | Zbl
[22] Mogilevich, L. and Ivanov, S., “The Study of Wave Propagation in a Shell with Soft Nonlinearity and with a Viscous Liquid Inside”, Russian J. Nonlinear Dyn., 15:3 (2019), 233–250 | MR | Zbl
[23] Mogilevich, L. I., Ivanov, S. V., and Blinkov, Yu. A., “Modeling of Nonlinear Waves in Two Coaxial Physically Nonlinear Shells with a Viscous Incompressible Fluid between Them, Taking into Account the Inertia of Its Motion”, Russian J. Nonlinear Dyn., 16:2 (2020), 275–290 | MR | Zbl
[24] Velmisov, P. A. and Ankilov, A. V., “Dynamic Stability of Plate Interacting with Viscous Fluid”, Cybern. Phys., 6:4 (2017), 262–270
[25] Hosseini-Hashemi, S., Arpanahi, R. A., Rahmanian, S., and Ahmadi-Savadkoohi, A., “Free Vibration Analysis of Nano-Plate in Viscous Fluid Medium Using Nonlocal Elasticity”, Eur. J. Mech. A/Solid, 74 (2019), 440–448 | DOI | MR | Zbl
[26] Mogilevich, L. I., Popov, V. S., and Popova, A. A., “Interaction Dynamics of Pulsating Viscous Liquid with the Walls of the Conduit on an Elastic Foundation”, J. Mach. Manuf. Reliab., 46:1 (2017), 12–19 | DOI
[27] Tulchinsky, A. and Gat, A. D., “Frequency Response and Resonance of a Thin Fluid Film Bounded by Elastic Sheets with Application to Mechanical Filters”, J. Sound Vibration, 438 (2019), 83–98 | DOI
[28] Barulina, M., Santo, L., Popov, V., Popova, A., and Kondratov, D., “Modeling Nonlinear Hydroelastic Response for the Endwall of the Plane Channel due to Its Upper-Wall Vibrations”, Mathematics, 10:20 (2022), Art. 3844, 10 pp. | DOI
[29] Kondratov, D. V., Kondratova, T. S., Popov, V. S., and Popova, M. V., “Modeling Hydroelastic Response of the Channel Wall Resting on a Nonlinear Elastic Foundation”, Proc. of the 9th International Conference on Industrial Engineering (ICIE'2023), Lecture Notes in Mechanical Engineering, eds. A. A. Radionov, V. R. Gasiyarov, Springer, Cham, 2023, 261–270 | DOI
[30] Kondratov, D. V., Kondratova, T. S., Popov, V. S., and Popova, A. A., “Modelling Hydroelastic Response of a Plate Resting on a Nonlinear Foundation and Interacting with a Pulsating Fluid Layer”, Comput. Res. Model., 15:3 (2023), 581–597 (Russian) | DOI
[31] Popov, V. S., Popova, A. A., Popova, M. V., and Khristoforova, A. V., “Simulating Interaction between a Plate on Elastic Foundation with the Softening Cubic Nonlinearity and a Vibrating Die via the Viscous Fluid Layer”, Herald of the Bauman Moscow State Technical University. Series Instrument Engineering, 2023, no. 4(145), 110–130 (Russian)
[32] Zh. Vychisl. Mat. Mat. Fiz., 51:2 (2011), 329–348 (Russian) | DOI | MR | Zbl
[33] Raeder, T., Tenenev, V. A., Koroleva, M. R., and Mishchenkova, O. V., “Nonlinear Processes in Safety Systems for Substances with Parameters Close to a Critical State”, Russian J. Nonlinear Dyn., 17:1 (2021), 119–138 | MR | Zbl
[34] Raeder, T., Tenenev, V. A., and Chernova, A. A., “Incorporation of Fluid Compressibility into the Calculation of the Stationary Mode of Operation of a Hydraulic Device at High Fluid Pressures”, Russian J. Nonlinear Dyn., 17:2 (2021), 195–209 | MR | Zbl
[35] Popov, V. S., Mogilevich, L. I., and Popova, A. A., “Oscillations of a Channel Wall on a Nonlinear Elastic Suspension under the Action of a Pulsating Layer of Viscous Gas in the Channel”, Izv. Vyssh. Uchebn. Zaved. Radiofizika, 66:10 (2023), 822–835 (Russian)
[36] Birman, V., “On the Effects of Nonlinear Elastic Foundation on Free Vibration of Beams”, Trans. ASME J. Appl. Mech., 53:2 (1986), 471–473 | DOI | MR
[37] Younesian, D., Hosseinkhani, A., Askari, H., and Esmailzadeh, E., “Elastic and Viscoelastic Foundations: A Review on Linear and Nonlinear Vibration Modeling and Applications”, Nonlinear Dyn., 97:1 (2019), 853–895 | DOI | MR | Zbl
[38] Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, 2021, no. 4, 3–17 (Russian) | DOI | Zbl
[39] Howell, P., Kozyreff, G., and Ockendon, J., Applied Solid Mechanics, Cambridge Univ. Press, Cambridge, 2009, 452 pp. | MR | Zbl
[40] Constantinescu, V. N., Gas Lubrication, ASME, New York, 1969, 621 pp.
[41] Loitsyanskii, L. G., Mechanics of Liquids and Gases, Int. Ser. Monogr. Aeronaut. Astronaut., 6, 2nd ed., Pergamon, Oxford, 1966, 816 pp. | MR
[42] Slezkin, N. A., Dynamics of Viscous Incompressible Liquid, Gostekhizdat, Moscow, 1955, 519 pp. (Russian) | MR
[43] Magnus, K., Schwingungen: Eine Einführung in die theoretische Behandlung von Schwingungsproblemen, Teubner, Stuttgart, 1961, 256 pp. | MR
[44] Nayfeh, A. H. and Mook, D. T., Nonlinear Oscillations, Wiley, New York, 1979, 720 pp. | MR | Zbl
[45] Ilgamov, M. A., Introduction to Nonlinear Hydroelasticity, Nauka, Moscow, 1991, 200 pp. (Russian) | MR | Zbl
[46] Nayfeh, A. H., Problems in Perturbations, New York, 1985, 556 pp. | MR
[47] Panovko, Ya. G., Introduction to the Theory of Mechanical Vibrations, Nauka, Moscow, 1991, 255 pp. (Russian)
[48] Brennan, M. J., Kovacic, I., Carrella, A., and Waters, T. P., “On the Jump-Up and Jump-Down Frequencies of the Duffing Oscillator”, J. Sound Vibration, 318:4–5 (2008), 1250–1261 | DOI