Experimental Study of the Accuracy of a Pendulum Clock with a Vibrating Pivot Point
Russian journal of nonlinear dynamics, Tome 20 (2024) no. 4, pp. 553-563.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper experimentally investigates the problem of the influence of periodic vibrations of the pivot point of a physical pendulum on its nonlinear oscillations in the vicinity of a stable equilibrium position on the vertical. The vibrations are assumed to be periodic and occur in the plane of the pendulum’s motion along an elliptical trajectory. In the experimental plane of parameters: the amplitude of pendulum oscillations and the parameter characterizing the difference in the vibration intensity of the pivot point in the horizontal and vertical directions, the values at which the pendulum clock gains and delays are selected. The experiment showed that with a vibration of 7.0 Hz, which is more intense in the horizontal direction, the oscillation period of the pendulum angle increases by 0.017 seconds compared to the pendulum’s natural period. In contrast, with vibration more intense in the vertical direction, the period decreases by 0.0164 seconds. The experiments were carried out on an ABB IRB 1600 industrial robot manipulator with a developed pendulum and a reflector with a lens system for a laser tracker installed at the end effector of the robot. Tracking of the trajectory of the pendulum pivot point was carried out using an API Radian Pro laser tracker, the amplitude and frequency of pendulum oscillations were recorded using a machine vision camera and image processing methods.
Keywords: pendulum, experiment
Mots-clés : vibrations, oscillation
@article{ND_2024_20_4_a7,
     author = {D. D. Kulminskiy and M. V. Malyshev},
     title = {Experimental {Study} of the {Accuracy} of a {Pendulum} {Clock} with a {Vibrating} {Pivot} {Point}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {553--563},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2024_20_4_a7/}
}
TY  - JOUR
AU  - D. D. Kulminskiy
AU  - M. V. Malyshev
TI  - Experimental Study of the Accuracy of a Pendulum Clock with a Vibrating Pivot Point
JO  - Russian journal of nonlinear dynamics
PY  - 2024
SP  - 553
EP  - 563
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2024_20_4_a7/
LA  - en
ID  - ND_2024_20_4_a7
ER  - 
%0 Journal Article
%A D. D. Kulminskiy
%A M. V. Malyshev
%T Experimental Study of the Accuracy of a Pendulum Clock with a Vibrating Pivot Point
%J Russian journal of nonlinear dynamics
%D 2024
%P 553-563
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2024_20_4_a7/
%G en
%F ND_2024_20_4_a7
D. D. Kulminskiy; M. V. Malyshev. Experimental Study of the Accuracy of a Pendulum Clock with a Vibrating Pivot Point. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 4, pp. 553-563. http://geodesic.mathdoc.fr/item/ND_2024_20_4_a7/

[1] Stephenson, A., “On Induced Stability”, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science (6), 15:86 (1908), 233–236 | DOI

[2] Kapitza, P. L., “Pendulum with a Vibrating Suspension”, Usp. Fiz. Nauk, 44:1 (1951), 7–20 (Russian) ; Collected Papers of P. L. Kapitza: Vol. 2, ed. D. ter Haar, Pergamon, Oxford, 1965 | DOI

[3] Kapitza, P. L., “Dynamical Stability of a Pendulum When Its Point of Suspension Vibrates”, Zh. Èksp. Teor. Fiz., 21:5 (1951), 588–597 (Russian); Collected Papers of P. L. Kapitza: Vol. 2, ed. D. ter Haar, Pergamon, Oxford, 1965

[4] Strizhak, T. G., Methods of Investigation in Dynamical Systems of Pendulum-Type, Nauka, Alma-Ata, 1981, 253 pp. (Russian) | MR

[5] Blekhman, I. I., Vibrational Mechanics: Nonlinear Dynamic Effects, General Approach, Applications, World Sci., River Edge, N.J., 2000, 536 pp. | MR

[6] Kholostova, O. V., Problems of Dynamics of Solids with Vibrating Suspension, R Dynamics, Institute of Computer Science, Izhevsk, 2016, 308 pp. (Russian)

[7] Yudovich, V. I., “Vibrodynamics and Vibrogeometry in Mechanical Systems with Constraints”, Uspekhi Mekh., 4:3 (2006), 26–158 (Russian) | MR

[8] Landau, L. D. and Lifshitz, E. M., Course of Theoretical Physics: Vol. 1. Mechanics, 3rd ed., Pergamon, Oxford, 1976, 224 pp. | MR

[9] Butikov, E. I., “On the Dynamic Stabilization of an Inverted Pendulum”, Am. J. Phys., 69:7 (2001), 755–768 | DOI

[10] Bogolubov, N. N., “Perturbation Theory in Nonlinear Mechanics”, Sb. Tr. Inst. Stroit. Mekh. Akad. Nauk Ukr. SSR, 1950, no. 14, 9–34 (Russian)

[11] Gilary, I., Moiseyev, N., Rahav, S., and Fishman, Sh., “Trapping of Particles by Lasers: The Quantum Kapitza Pendulum”, J. Phys. A, 36:25 (2003), L409–L415 | DOI | MR | Zbl

[12] Neĭshtadt, A. I., Vasiliev, A. A., and Artemyev, A. V., “Capture into Resonance and Escape from It in a Forced Nonlinear Pendulum”, Regul. Chaotic Dyn., 18:6 (2013), 686–696 | DOI | MR

[13] Borisov, A. V., Kilin, A. A., and Mamaev, I. S., “A Parabolic Chaplygin Pendulum and a Paul Trap: Nonintegrability, Stability, and Boundedness”, Regul. Chaotic Dyn., 24:3 (2019), 329–352 | DOI | MR | Zbl

[14] Araujo, G. C. and Cabral, H. E., “Parametric Stability of a Charged Pendulum with an Oscillating Suspension Point”, Regul. Chaotic Dyn., 26:1 (2021), 39–60 | DOI | MR | Zbl

[15] Acheson, D. J., “Multiple-Nodding Oscillations of a Driven Inverted Pendulum”, Proc. Roy. Soc. London Ser. A, 448:1932 (1995), 89–95 | DOI | Zbl

[16] Borisov, A. V. and Ivanov, A. P., “Dynamics of the Tippe Top on a Vibrating Base”, Regul. Chaotic Dyn., 25:6 (2020), 707–715 | DOI | MR | Zbl

[17] Hołyst, J. A. and Wojciechowski, W., “The Effect of Kapitza Pendulum and Price Equilibrium”, Phys. A, 324:1–2 (2003), 388–395 | MR

[18] Courant, R. and Robbins, H., What Is Mathematics? An Elementary Approach to Ideas and Methods, 2nd ed., Oxford Univ. Press, New York, 1996, 592 pp. | MR | Zbl

[19] Srzednicki, R., “On Periodic Solutions in the Whitney's Inverted Pendulum Problem”, Discrete Contin. Dyn. Syst. Ser. S, 12:7 (2019), 2127–2141 | MR | Zbl

[20] Izv. Ross. Akad. Nauk Ser. Mat., 79:5 (2015), 39–46 (Russian) | DOI | MR | Zbl

[21] Polekhin, I. Yu., “The Method of Averaging for the Kapitza – Whitney Pendulum”, Regul. Chaotic Dyn., 25:4 (2020), 401–410 | DOI | MR | Zbl

[22] Polekhin, I. Yu., “The Spherical Kapitza – Whitney Pendulum”, Regul. Chaotic Dyn., 27:1 (2022), 65–76 | DOI | MR | Zbl

[23] Polekhin, I. Yu., “Examples of Topological Approach to the Problem of Inverted Pendulum with Moving Pivot Point”, Nelin. Dinam., 10:4 (2014), 465–472 (Russian) | DOI | MR | Zbl

[24] Bardin, B. S., Rudenko, T. V., and Savin, A. A., “On the Orbital Stability of Planar Periodic Motions of a Rigid Body in the Bobylev – Steklov Case”, Regul. Cahotic Dyn., 17:6 (2012), 533–546 | DOI | MR | Zbl

[25] Surov, M. O., Gusev, S. V., and Shiriaev, A. S., “Shaping Stable Oscillation of a Pendulum on a Cart around the Horizontal”, IFAC-PapersOnLine, 50:1 (2017), 7621–7626 | DOI

[26] Bardin, B. S. and Savin, A. A., “On the Orbital Stability of Pendulum-Like Oscillations and Rotations of a Symmetric Rigid Body with a Fixed Point”, Regul. Chaotic Dyn., 17:3–4 (2012), 243–257 | DOI | MR | Zbl

[27] Prikl. Mat. Mekh., 75:2 (2011), 193–203 (Russian) | DOI | MR | Zbl

[28] Takano, H., “Motion of an Articulated Straw along a Vibrating Rod”, Russian J. Nonlinear Dyn., 2024 | MR

[29] Izv. Akad. Nauk. Mekh. Tverd. Tela, 2018, no. 5, 112–123 | DOI | MR

[30] Bendat, J. S. and Piersol, A. G., Engineering Applications of Correlation and Spectral Analysis, 2nd ed., Wiley, New York, 1980, 472 pp. | Zbl

[31] Hartley, R. and Zisserman, A., Multiple View Geometry in Computer Vision, with a foreword by Olivier Faugeras, 2nd ed., Cambridge Univ. Press, Cambridge, 2003, xvi, 655 pp. | MR