Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2024_20_4_a7, author = {D. D. Kulminskiy and M. V. Malyshev}, title = {Experimental {Study} of the {Accuracy} of a {Pendulum} {Clock} with a {Vibrating} {Pivot} {Point}}, journal = {Russian journal of nonlinear dynamics}, pages = {553--563}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2024_20_4_a7/} }
TY - JOUR AU - D. D. Kulminskiy AU - M. V. Malyshev TI - Experimental Study of the Accuracy of a Pendulum Clock with a Vibrating Pivot Point JO - Russian journal of nonlinear dynamics PY - 2024 SP - 553 EP - 563 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2024_20_4_a7/ LA - en ID - ND_2024_20_4_a7 ER -
%0 Journal Article %A D. D. Kulminskiy %A M. V. Malyshev %T Experimental Study of the Accuracy of a Pendulum Clock with a Vibrating Pivot Point %J Russian journal of nonlinear dynamics %D 2024 %P 553-563 %V 20 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2024_20_4_a7/ %G en %F ND_2024_20_4_a7
D. D. Kulminskiy; M. V. Malyshev. Experimental Study of the Accuracy of a Pendulum Clock with a Vibrating Pivot Point. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 4, pp. 553-563. http://geodesic.mathdoc.fr/item/ND_2024_20_4_a7/
[1] Stephenson, A., “On Induced Stability”, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science (6), 15:86 (1908), 233–236 | DOI
[2] Kapitza, P. L., “Pendulum with a Vibrating Suspension”, Usp. Fiz. Nauk, 44:1 (1951), 7–20 (Russian) ; Collected Papers of P. L. Kapitza: Vol. 2, ed. D. ter Haar, Pergamon, Oxford, 1965 | DOI
[3] Kapitza, P. L., “Dynamical Stability of a Pendulum When Its Point of Suspension Vibrates”, Zh. Èksp. Teor. Fiz., 21:5 (1951), 588–597 (Russian); Collected Papers of P. L. Kapitza: Vol. 2, ed. D. ter Haar, Pergamon, Oxford, 1965
[4] Strizhak, T. G., Methods of Investigation in Dynamical Systems of Pendulum-Type, Nauka, Alma-Ata, 1981, 253 pp. (Russian) | MR
[5] Blekhman, I. I., Vibrational Mechanics: Nonlinear Dynamic Effects, General Approach, Applications, World Sci., River Edge, N.J., 2000, 536 pp. | MR
[6] Kholostova, O. V., Problems of Dynamics of Solids with Vibrating Suspension, R Dynamics, Institute of Computer Science, Izhevsk, 2016, 308 pp. (Russian)
[7] Yudovich, V. I., “Vibrodynamics and Vibrogeometry in Mechanical Systems with Constraints”, Uspekhi Mekh., 4:3 (2006), 26–158 (Russian) | MR
[8] Landau, L. D. and Lifshitz, E. M., Course of Theoretical Physics: Vol. 1. Mechanics, 3rd ed., Pergamon, Oxford, 1976, 224 pp. | MR
[9] Butikov, E. I., “On the Dynamic Stabilization of an Inverted Pendulum”, Am. J. Phys., 69:7 (2001), 755–768 | DOI
[10] Bogolubov, N. N., “Perturbation Theory in Nonlinear Mechanics”, Sb. Tr. Inst. Stroit. Mekh. Akad. Nauk Ukr. SSR, 1950, no. 14, 9–34 (Russian)
[11] Gilary, I., Moiseyev, N., Rahav, S., and Fishman, Sh., “Trapping of Particles by Lasers: The Quantum Kapitza Pendulum”, J. Phys. A, 36:25 (2003), L409–L415 | DOI | MR | Zbl
[12] Neĭshtadt, A. I., Vasiliev, A. A., and Artemyev, A. V., “Capture into Resonance and Escape from It in a Forced Nonlinear Pendulum”, Regul. Chaotic Dyn., 18:6 (2013), 686–696 | DOI | MR
[13] Borisov, A. V., Kilin, A. A., and Mamaev, I. S., “A Parabolic Chaplygin Pendulum and a Paul Trap: Nonintegrability, Stability, and Boundedness”, Regul. Chaotic Dyn., 24:3 (2019), 329–352 | DOI | MR | Zbl
[14] Araujo, G. C. and Cabral, H. E., “Parametric Stability of a Charged Pendulum with an Oscillating Suspension Point”, Regul. Chaotic Dyn., 26:1 (2021), 39–60 | DOI | MR | Zbl
[15] Acheson, D. J., “Multiple-Nodding Oscillations of a Driven Inverted Pendulum”, Proc. Roy. Soc. London Ser. A, 448:1932 (1995), 89–95 | DOI | Zbl
[16] Borisov, A. V. and Ivanov, A. P., “Dynamics of the Tippe Top on a Vibrating Base”, Regul. Chaotic Dyn., 25:6 (2020), 707–715 | DOI | MR | Zbl
[17] Hołyst, J. A. and Wojciechowski, W., “The Effect of Kapitza Pendulum and Price Equilibrium”, Phys. A, 324:1–2 (2003), 388–395 | MR
[18] Courant, R. and Robbins, H., What Is Mathematics? An Elementary Approach to Ideas and Methods, 2nd ed., Oxford Univ. Press, New York, 1996, 592 pp. | MR | Zbl
[19] Srzednicki, R., “On Periodic Solutions in the Whitney's Inverted Pendulum Problem”, Discrete Contin. Dyn. Syst. Ser. S, 12:7 (2019), 2127–2141 | MR | Zbl
[20] Izv. Ross. Akad. Nauk Ser. Mat., 79:5 (2015), 39–46 (Russian) | DOI | MR | Zbl
[21] Polekhin, I. Yu., “The Method of Averaging for the Kapitza – Whitney Pendulum”, Regul. Chaotic Dyn., 25:4 (2020), 401–410 | DOI | MR | Zbl
[22] Polekhin, I. Yu., “The Spherical Kapitza – Whitney Pendulum”, Regul. Chaotic Dyn., 27:1 (2022), 65–76 | DOI | MR | Zbl
[23] Polekhin, I. Yu., “Examples of Topological Approach to the Problem of Inverted Pendulum with Moving Pivot Point”, Nelin. Dinam., 10:4 (2014), 465–472 (Russian) | DOI | MR | Zbl
[24] Bardin, B. S., Rudenko, T. V., and Savin, A. A., “On the Orbital Stability of Planar Periodic Motions of a Rigid Body in the Bobylev – Steklov Case”, Regul. Cahotic Dyn., 17:6 (2012), 533–546 | DOI | MR | Zbl
[25] Surov, M. O., Gusev, S. V., and Shiriaev, A. S., “Shaping Stable Oscillation of a Pendulum on a Cart around the Horizontal”, IFAC-PapersOnLine, 50:1 (2017), 7621–7626 | DOI
[26] Bardin, B. S. and Savin, A. A., “On the Orbital Stability of Pendulum-Like Oscillations and Rotations of a Symmetric Rigid Body with a Fixed Point”, Regul. Chaotic Dyn., 17:3–4 (2012), 243–257 | DOI | MR | Zbl
[27] Prikl. Mat. Mekh., 75:2 (2011), 193–203 (Russian) | DOI | MR | Zbl
[28] Takano, H., “Motion of an Articulated Straw along a Vibrating Rod”, Russian J. Nonlinear Dyn., 2024 | MR
[29] Izv. Akad. Nauk. Mekh. Tverd. Tela, 2018, no. 5, 112–123 | DOI | MR
[30] Bendat, J. S. and Piersol, A. G., Engineering Applications of Correlation and Spectral Analysis, 2nd ed., Wiley, New York, 1980, 472 pp. | Zbl
[31] Hartley, R. and Zisserman, A., Multiple View Geometry in Computer Vision, with a foreword by Olivier Faugeras, 2nd ed., Cambridge Univ. Press, Cambridge, 2003, xvi, 655 pp. | MR