Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2024_20_4_a5, author = {V. Yu. Ol'shanskii}, title = {Nonregular {Precession} of a {Gyrostat} in {Three} {Force} {Fields}}, journal = {Russian journal of nonlinear dynamics}, pages = {513--528}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2024_20_4_a5/} }
V. Yu. Ol'shanskii. Nonregular Precession of a Gyrostat in Three Force Fields. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 4, pp. 513-528. http://geodesic.mathdoc.fr/item/ND_2024_20_4_a5/
[1] Bogoyavlensky, O. I., “Euler Equations on Finite-Dimensional Lie Algebras Arising in Physical Problems”, Comm. Math. Phys., 95:3 (1984), 307–315 | DOI | MR | Zbl
[2] Yehia, H. M., “On the Motion of a Rigid Body Acted upon by Potential and Gyroscopic Forces: 1. The Equations of Motion and Their Transformation”, J. Méc. Théor. Appl., 5:5 (1986), 747–753 | MR
[3] Yehia, H. M. and El-Kenani, H. N., “Effect of the Gravity and Magnetic Field to Find Regular Precessions of a Satellite-Gyrostat with Principal Axes on a Circular Orbit”, J. Appl. Comput. Mech., 7:4 (2021), 2120–2128
[4] Grioli, G., “Esistenza e determinazione delle precessioni regolari dinamicamente possibili per un solido pesante asimmetrico”, Ann. Mat. Pura Appl. (4), 26:3–4 (1947), 271–281 | DOI | MR | Zbl
[5] Prikl. Mat. Mekh., 82:5 (2018), 559–571 (Russian) | DOI | MR | Zbl
[6] Ol'shanskii, V. Yu., “New Cases of Regular Precession of an Asymmetric Liquid-Filled Rigid Body”, Celestial Mech. Dynam. Astronom., 131:12 (2019), Paper No. 57, 19 pp. | MR | Zbl
[7] Ol'shanskii, V. Yu., “Analysis of Regular Precession Conditions for Asymmetrical Liquid-Filled Rigid Bodies”, Celestial Mech. Dynam. Astronom., 132:9 (2020), Paper No. 46, 20 pp. | MR | Zbl
[8] Gorr, G. V., Maznev, A. V., and Shchetinina, E. K., Precession Motions in the Rigid Body Dynamics and in the Dynamics of Coupled Rigid Bodies, Donetsk Nat. Univ., Donetsk, 2009, 222 pp. (Russian)
[9] Borisov, A. V. and Mamaev, I. S., Rigid Body Dynamics, De Gruyter Stud. Math. Phys., 52, De Gruyter, Berlin, 2018, vii, 526 pp. ; Borisov, A. V. and Mamaev, I. S., Rigid Body Dynamics: Hamiltonian Methods, Integrability, Chaos, R Dynamics, Institute of Computer Science, Izhevsk, 2005, 576 pp. (Russian) | MR | MR
[10] Yehia, H. M., Rigid Body Dynamics: A Lagrangian Approach, Adv. Mech. Math., 45, Birkhäuser, Cham, 2022, 485 pp. | DOI | MR | Zbl
[11] Yehia, H. M., “On the Regular Precession of an Asymmetric Rigid Body Acted upon by Uniform Gravity and Magnetic Fields”, Egypt. J. Basic Appl. Sci., 2:3 (2015), 200–205
[12] Yehia, H. M., “Regular Precession of a Rigid Body (Gyrostat) Acted upon by an Irreducible Combination of Three Classical Fields”, J. Egypt. Math. Soc., 25:2 (2017), 216–219 | DOI | MR | Zbl
[13] Ol'shanskii, V. Yu., “Regular Precession of a Rigid Body in Two Uniform Fields”, Mech. Res. Commun., 127 (2023), Art. 104041
[14] Prikl. Mat. Mekh., 86:6 (2022), 872–886 (Russian) | DOI | Zbl
[15] Prikl. Mat. Mekh., 87:1 (2023), 3–18 (Russian) | DOI | MR | Zbl
[16] Izv. Akad. Nauk. Mekh. Tverd. Tela, 2023, no. 3, 123–134 (Russian) | DOI | MR | Zbl
[17] Gorr, G. V., “On a Class of Precessions of a Rigid Body with a Fixed Point under the Action of Forces of Three Homogeneous Force Fields”, Russian J. Nonlinear Dyn., 19:2 (2023), 249–264 | MR | Zbl
[18] Ol'shanskii, V. Yu., “Nonregular Precession of a Rigid Body in Three Uniform Fields”, Prikl. Mat. Mekh., 88:1 (2024), 17–33 (Russian) | MR
[19] Hussein, A. M., “Precessional Motion of a Rigid Body Acted upon by Three Irreducible Fields”, Russian J. Nonlinear Dyn., 15:3 (2019), 285–292 | MR | Zbl
[20] Prikl. Mat. Mekh., 87:4 (2023), 571–588 (Russian) | DOI | MR | Zbl