Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2024_20_4_a4, author = {O. V. Kholostova}, title = {On {Periodic} {Motions} of a {Nonautonomous} {Hamiltonian} {System} at {Resonance} 2:1:1}, journal = {Russian journal of nonlinear dynamics}, pages = {493--511}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2024_20_4_a4/} }
TY - JOUR AU - O. V. Kholostova TI - On Periodic Motions of a Nonautonomous Hamiltonian System at Resonance 2:1:1 JO - Russian journal of nonlinear dynamics PY - 2024 SP - 493 EP - 511 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2024_20_4_a4/ LA - en ID - ND_2024_20_4_a4 ER -
O. V. Kholostova. On Periodic Motions of a Nonautonomous Hamiltonian System at Resonance 2:1:1. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 4, pp. 493-511. http://geodesic.mathdoc.fr/item/ND_2024_20_4_a4/
[1] Kholostova, O. V., “On Nonlinear Oscillations of a Time-Periodic Hamiltonian System at a $2 : 1 : 1$ Resonance”, Russian J. Nonlinear Dyn., 18:4 (2022), 481–512 | MR | Zbl
[2] Kholostova, O. V., “On Nonlinear Oscillations of a Near-Autonomous Hamiltonian System in One Case of Integer Nonequal Frequencies”, Russian J. Nonlinear Dyn., 19:4 (2023), 447–471 | MR | Zbl
[3] Sadovskih, D. A. and Zhilinskii, B. I., “Hamiltonian Systems with Detuned $1:1:2$ Resonance: Manifestation of Bidromy”, Ann. Physics, 322:1 (2007), 164–200 | DOI | MR
[4] Efstathiou, K., Hanßmann, H., and Marchesiello, A., “Bifurcations and Monodromy of the Axially Symmetric $1:1:-2$ Resonance”, J. Geom. Phys., 146 (2019), Art. 103493, 30 pp. | DOI | MR
[5] Joyeux, M., “Classical Dynamics of the $1:1$, $1:2$ and $1:3$ Resonance Hamiltonians”, Chem. Phys., 203:3 (1996), 281–307 | DOI
[6] Benettin, G., Fassò, F., and Guzzo, M., “Nekhoroshev-Stability of Elliptic Equilibria of Hamiltonian Systems”, Comm. Math. Phys., 197:2 (1998), 347–360 | DOI | MR | Zbl
[7] Bardin, B. S. and Maciejewski, A. J., “Transcendental Case in Stability Problem of Hamiltonian System with Two Degrees of Freedom in Presence of First Order Resonance”, Qual. Theory Dyn. Syst., 12:1 (2013), 207–216 | DOI | MR | Zbl
[8] dos Santos, F. and Vidal, C., “Stability of Equilibrium Solutions of Autonomous and Periodic Hamiltonian Systems in the Case of Multiple Resonances”, J. Differ. Equ., 258:11 (2015), 3880–3901 | DOI | MR | Zbl
[9] Kholostova, O. V., “On the Motions of One Near-Autonomous Hamiltonian System at a $1 : 1 : 1$ Resonance”, Regul. Chaotic Dyn., 24:3 (2019), 235–265 | DOI | MR | Zbl
[10] Cárcamo-Díaz, D., Palacián, J. F., Vidal, C., and Yanguas, P., “Nonlinear Stability of Elliptic Equilibria in Hamiltonian Systems with Exponential Time Estimates”, Discrete Contin. Dyn. Syst., 41:11 (2021), 5183–5208 | DOI | MR
[11] Christov, O., “On the Integrability of Twofold $1 : 2$ Hamiltonian Resonance”, Discrete Contin. Dyn. Syst. Ser. B, 28:8 (2023), 4442–4456 | DOI | MR | Zbl
[12] Malkin, I. G., Some Problems in the Theory of Nonlinear Oscillations: In 2 Vols.: Vol. 1, United States Atomic Energy Commission, Technical Information Service, Germantown, Md., 1959, 589 pp.