Dynamical Systems of an Infinite-Dimensional Nonlinear Operator on the Banach Space $l_1$
Russian journal of nonlinear dynamics, Tome 20 (2024) no. 4, pp. 685-703.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate discrete-time dynamical systems generated by an infinite-dimensional nonlinear operator that maps the Banach space $l_1$ to itself. It is demonstrated that this operator possesses up to seven fixed points. By leveraging the specific form of our operator, we illustrate that analyzing the operator can be simplified to a two-dimensional approach. Subsequently, we provide a detailed description of all fixed points, invariant sets for the two-dimensional operator and determine the set of limit points for its trajectories. These results are then applied to find the set of limit points for trajectories generated by the infinite-dimensional operator.
Keywords: infinite-dimensional operator, trajectory, fixed point, limit point, partial order
@article{ND_2024_20_4_a14,
     author = {U. R. Olimov and U. A. Rozikov},
     title = {Dynamical {Systems} of an {Infinite-Dimensional} {Nonlinear} {Operator} on the {Banach} {Space} $l_1$},
     journal = {Russian journal of nonlinear dynamics},
     pages = {685--703},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2024_20_4_a14/}
}
TY  - JOUR
AU  - U. R. Olimov
AU  - U. A. Rozikov
TI  - Dynamical Systems of an Infinite-Dimensional Nonlinear Operator on the Banach Space $l_1$
JO  - Russian journal of nonlinear dynamics
PY  - 2024
SP  - 685
EP  - 703
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2024_20_4_a14/
LA  - en
ID  - ND_2024_20_4_a14
ER  - 
%0 Journal Article
%A U. R. Olimov
%A U. A. Rozikov
%T Dynamical Systems of an Infinite-Dimensional Nonlinear Operator on the Banach Space $l_1$
%J Russian journal of nonlinear dynamics
%D 2024
%P 685-703
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2024_20_4_a14/
%G en
%F ND_2024_20_4_a14
U. R. Olimov; U. A. Rozikov. Dynamical Systems of an Infinite-Dimensional Nonlinear Operator on the Banach Space $l_1$. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 4, pp. 685-703. http://geodesic.mathdoc.fr/item/ND_2024_20_4_a14/

[1] Bilgin, A., Brett, A., Kulenović, M. R. S., and Pilav, E., “Global Dynamics of a Cooperative Discrete System in the Plane”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 28:7 (2018), Art. 1830022, 17 pp. | DOI | MR

[2] Dancer, E. N. and Hess, P., “Stability of Fixed Points for Order-Preserving Discrete-Time Dynamical Systems”, J. Reine Angew. Math., 419 (1991), 125–139 | MR | Zbl

[3] Henning, F. and Külske, C., “Coexistence of Localized Gibbs Measures and Delocalized Gradient Gibbs Measures on Trees”, Ann. Appl. Probab., 31:5 (2021), 2284–2310 | DOI | MR | Zbl

[4] Henning, F., Külske, C., Le Ny, A., and Rozikov, U. A., “Gradient Gibbs Measures for the SOS Model with Countable Values on a Cayley Tree”, Electron. J. Probab., 24 (2019), Paper No. 104, 23 pp. | DOI | MR

[5] Henning, F. and Külske, C., “Existence of Gradient Gibbs Measures on Regular Trees Which Are Not Translation Invariant”, Ann. Appl. Probab., 33:4 (2023), 3010–3038 | DOI | MR | Zbl

[6] Khakimov, R. M., Makhammadaliev, M. T., and Rozikov, U. A., “Gibbs Measures for HC-Model with a Cuountable Set of Spin Values on a Cayley Tree”, Math. Phys. Anal. Geom., 26:2 (2023), Paper No. 9, 22 pp. | DOI | MR | Zbl

[7] Kulenović, M. R. S. and Merino, O., “Global Bifurcation for Discrete Competitive Systems in the Plane”, Discrete Contin. Dyn. Syst. Ser. B, 12:1 (2009), 133–149 | MR | Zbl

[8] Külske, C. and Schriever, P., “Gradient Gibbs Measures and Fuzzy Transformations on Trees”, Markov Process. Related Fields, 23:4 (2017), 553–590 | MR | Zbl

[9] Teoret. Mat. Fiz., 214:2 (2023), 329–344 (Russian) | DOI | DOI | MR | Zbl

[10] Olimov, U. R., “Description of Fixed Points of an Infinite Dimensional Operator”, Bull. Inst. Math., 7:1 (2024), 41–48

[11] Rozikov, U. A., An Introduction to Mathematical Billiards, World Sci., Hackensack, N.J., 2019, xvii, 204 pp. | MR | Zbl

[12] Rozikov, U. A. and Haydarov, F. H., “A HC Model with Countable Set of Spin Values: Uncountable Set of Gibbs Measures”, Reviews in Math. Phys., 35:1 (2023), Art. 2250039, 35 pp. | DOI | MR

[13] Rozikov, U. A., “Mirror Symmetry of Height-Periodic Gradient Gibbs Measures of an SOS Model on Cayley Trees”, J. Stat. Phys., 188:3 (2022), Paper No. 26, 16 pp. | DOI | MR | Zbl