Heteroclinic Orbits for Singular Hamiltonian Systems
Russian journal of nonlinear dynamics, Tome 20 (2024) no. 4, pp. 671-683

Voir la notice de l'article provenant de la source Math-Net.Ru

We are concerned with the existence of heteroclinic orbits for singular Hamiltonian systems of second order $\ddot{q}(t) + \nabla V(t, \,q)=0 $ where $V(t,\,q)$ is periodic in $t$ and has a singularity at a point ${q=e}$. Suppose $V$ possesses a global maximum $\overline V$ on $\mathbb R \times \mathbb R ^N\setminus\{e\}$ and $V(t,\,x)= \overline{V}$ if and only if $x\in \mathcal{M}$ where $\mathcal{M}$ contains at least two points and consists only of isolated points. Under these and suitable conditions on $V$ near $q=e$ and at infinity, we show for each $a_0^{}\in \mathcal M$, the existence of at least one heteroclinic orbit joining $a_0^{}$ to $\mathcal M \setminus\{a_0^{}\}$. Two different settings are studied. For the first, the usual strong force condition of Gordon near the singularity is assumed. For the second, the potential $V$ behaves near $q=e$ like $-\frac1{|q-e|^\alpha}$ with $0\alpha2$ (the weak force case). In both cases the existence of heteroclinic orbits $q\colon\mathbb R \to\mathbb R^N\setminus\{e\}$ is obtained via a minimization of the corresponding action functional.
Keywords: heteroclinic orbits, singular Hamiltonian systems, minimization method
@article{ND_2024_20_4_a13,
     author = {M. Antabli and M. Boughariou},
     title = {Heteroclinic {Orbits} for {Singular} {Hamiltonian} {Systems}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {671--683},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2024_20_4_a13/}
}
TY  - JOUR
AU  - M. Antabli
AU  - M. Boughariou
TI  - Heteroclinic Orbits for Singular Hamiltonian Systems
JO  - Russian journal of nonlinear dynamics
PY  - 2024
SP  - 671
EP  - 683
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2024_20_4_a13/
LA  - en
ID  - ND_2024_20_4_a13
ER  - 
%0 Journal Article
%A M. Antabli
%A M. Boughariou
%T Heteroclinic Orbits for Singular Hamiltonian Systems
%J Russian journal of nonlinear dynamics
%D 2024
%P 671-683
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2024_20_4_a13/
%G en
%F ND_2024_20_4_a13
M. Antabli; M. Boughariou. Heteroclinic Orbits for Singular Hamiltonian Systems. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 4, pp. 671-683. http://geodesic.mathdoc.fr/item/ND_2024_20_4_a13/