Heteroclinic Orbits for Singular Hamiltonian Systems
Russian journal of nonlinear dynamics, Tome 20 (2024) no. 4, pp. 671-683.

Voir la notice de l'article provenant de la source Math-Net.Ru

We are concerned with the existence of heteroclinic orbits for singular Hamiltonian systems of second order $\ddot{q}(t) + \nabla V(t, \,q)=0 $ where $V(t,\,q)$ is periodic in $t$ and has a singularity at a point ${q=e}$. Suppose $V$ possesses a global maximum $\overline V$ on $\mathbb R \times \mathbb R ^N\setminus\{e\}$ and $V(t,\,x)= \overline{V}$ if and only if $x\in \mathcal{M}$ where $\mathcal{M}$ contains at least two points and consists only of isolated points. Under these and suitable conditions on $V$ near $q=e$ and at infinity, we show for each $a_0^{}\in \mathcal M$, the existence of at least one heteroclinic orbit joining $a_0^{}$ to $\mathcal M \setminus\{a_0^{}\}$. Two different settings are studied. For the first, the usual strong force condition of Gordon near the singularity is assumed. For the second, the potential $V$ behaves near $q=e$ like $-\frac1{|q-e|^\alpha}$ with $0\alpha2$ (the weak force case). In both cases the existence of heteroclinic orbits $q\colon\mathbb R \to\mathbb R^N\setminus\{e\}$ is obtained via a minimization of the corresponding action functional.
Keywords: heteroclinic orbits, singular Hamiltonian systems, minimization method
@article{ND_2024_20_4_a13,
     author = {M. Antabli and M. Boughariou},
     title = {Heteroclinic {Orbits} for {Singular} {Hamiltonian} {Systems}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {671--683},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2024_20_4_a13/}
}
TY  - JOUR
AU  - M. Antabli
AU  - M. Boughariou
TI  - Heteroclinic Orbits for Singular Hamiltonian Systems
JO  - Russian journal of nonlinear dynamics
PY  - 2024
SP  - 671
EP  - 683
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2024_20_4_a13/
LA  - en
ID  - ND_2024_20_4_a13
ER  - 
%0 Journal Article
%A M. Antabli
%A M. Boughariou
%T Heteroclinic Orbits for Singular Hamiltonian Systems
%J Russian journal of nonlinear dynamics
%D 2024
%P 671-683
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2024_20_4_a13/
%G en
%F ND_2024_20_4_a13
M. Antabli; M. Boughariou. Heteroclinic Orbits for Singular Hamiltonian Systems. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 4, pp. 671-683. http://geodesic.mathdoc.fr/item/ND_2024_20_4_a13/

[1] Antabli, M. and Boughariou, M., “Homoclinic Solutions for Singular Hamiltonian Systems without the Strong Force Condition”, J. Math. Anal. Appl., 472:1 (2019), 352–371 | DOI | MR | Zbl

[2] Borges, M. J., “Heteroclinic and Homoclinic Solutions for a Singular Hamiltonian System”, European J. Appl. Math., 17:1 (2006), 1–32 | DOI | MR | Zbl

[3] Caldiroli, P. and Jeanjean, L., “Homoclinics and Heteroclinics for a Class of Concervative Singular Hamiltonian Systems”, J. Differential Equations, 136:1 (1997), 76–114 | DOI | MR | Zbl

[4] Costa, D. G. and Tehrani, H., “On a Class of Singular Second-Order Hamiltonian Systems with Infinitely Many Homoclinic Solutions”, J. Math. Anal. Appl., 412:1 (2014), 200–211 | DOI | MR | Zbl

[5] Coti Zelati, V. and Rabinowitz, P. H., “Heteroclinic Solutions between Stationary Points at Different Energy Levels”, Topol. Methods Nonlinear Anal., 17:1 (2001), 1–21 | DOI | MR | Zbl

[6] Gordon, W. B., “Conservative Dynamical Systems Involving Strong Forces”, Trans. Am. Math. Soc., 204 (1975), 113–135 | DOI | MR | Zbl

[7] Izydorek, M. and Janczewska, J., “Heteroclinic Solutions for a Class of the Second Order Hamiltonian Systems”, J. Differential Equations, 238:2 (2007), 381–393 | DOI | MR | Zbl

[8] Izydorek, M. and Janczewska, J., “Connecting Orbits for a Periodically Forced Singular Planar Newtonian System”, J. Fixed Point Theory Appl., 12:1–2 (2012), 59–67 | DOI | MR | Zbl

[9] Janczewska, J., “The Existence and Multiplicity of Heteroclinic and Homoclinic Orbits for a Class of Singular Hamiltonian Systems in $R^2$”, Boll. Unione Mat. Ital. (9), 3:3 (2010), 471–491 | MR | Zbl

[10] Rabinowitz, P. H., “Periodic and Heteroclinic Orbits for a Periodic Hamiltonian System”, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 6:5 (1989), 331–346 | MR | Zbl

[11] Rabinowitz, P. H., “Homoclinics for a Singular Hamiltonian System”, Geometric Analysis and the Calculus of Variations, ed. J. Jost, Int. Press, Cambridge, Mass., 1996, 267–296 | MR | Zbl

[12] Rabinowitz, P. H. and Tanaka, K., “Some Results on Connecting Orbits for a Class of Hamiltonian Systems”, Math. Z., 206:3 (1991), 473–499 | DOI | MR | Zbl

[13] Serra, E., “Heteroclinic Orbits at Infinity for Two Classes of Hamiltonian Systems”, Boll. Un. Mat. Ital. B (7), 8:3 (1994), 615–639 | MR | Zbl

[14] Serra, E. and Terracini, S., “Noncollisions Solutions to Some Singular Minimisation Problems with Keplerian-Like Potentials”, Nonlinear Anal. Theory Methods Appl., 22:1 (1994), 45–62 | DOI | MR | Zbl

[15] Tanaka, K., “Homoclinic Orbits for a Singular Second Order Hamiltonian System”, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 7:5 (1990), 427–438 | MR | Zbl

[16] Tehrani, H., “Connecting Orbits for a Class of Singular Time-Periodic Second-Order Hamiltonian Systems”, Proc. Roy. Soc. Edinburgh Sect. A, 146:6 (2016), 1211–1241 | DOI | MR | Zbl