Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2024_20_4_a13, author = {M. Antabli and M. Boughariou}, title = {Heteroclinic {Orbits} for {Singular} {Hamiltonian} {Systems}}, journal = {Russian journal of nonlinear dynamics}, pages = {671--683}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2024_20_4_a13/} }
M. Antabli; M. Boughariou. Heteroclinic Orbits for Singular Hamiltonian Systems. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 4, pp. 671-683. http://geodesic.mathdoc.fr/item/ND_2024_20_4_a13/
[1] Antabli, M. and Boughariou, M., “Homoclinic Solutions for Singular Hamiltonian Systems without the Strong Force Condition”, J. Math. Anal. Appl., 472:1 (2019), 352–371 | DOI | MR | Zbl
[2] Borges, M. J., “Heteroclinic and Homoclinic Solutions for a Singular Hamiltonian System”, European J. Appl. Math., 17:1 (2006), 1–32 | DOI | MR | Zbl
[3] Caldiroli, P. and Jeanjean, L., “Homoclinics and Heteroclinics for a Class of Concervative Singular Hamiltonian Systems”, J. Differential Equations, 136:1 (1997), 76–114 | DOI | MR | Zbl
[4] Costa, D. G. and Tehrani, H., “On a Class of Singular Second-Order Hamiltonian Systems with Infinitely Many Homoclinic Solutions”, J. Math. Anal. Appl., 412:1 (2014), 200–211 | DOI | MR | Zbl
[5] Coti Zelati, V. and Rabinowitz, P. H., “Heteroclinic Solutions between Stationary Points at Different Energy Levels”, Topol. Methods Nonlinear Anal., 17:1 (2001), 1–21 | DOI | MR | Zbl
[6] Gordon, W. B., “Conservative Dynamical Systems Involving Strong Forces”, Trans. Am. Math. Soc., 204 (1975), 113–135 | DOI | MR | Zbl
[7] Izydorek, M. and Janczewska, J., “Heteroclinic Solutions for a Class of the Second Order Hamiltonian Systems”, J. Differential Equations, 238:2 (2007), 381–393 | DOI | MR | Zbl
[8] Izydorek, M. and Janczewska, J., “Connecting Orbits for a Periodically Forced Singular Planar Newtonian System”, J. Fixed Point Theory Appl., 12:1–2 (2012), 59–67 | DOI | MR | Zbl
[9] Janczewska, J., “The Existence and Multiplicity of Heteroclinic and Homoclinic Orbits for a Class of Singular Hamiltonian Systems in $R^2$”, Boll. Unione Mat. Ital. (9), 3:3 (2010), 471–491 | MR | Zbl
[10] Rabinowitz, P. H., “Periodic and Heteroclinic Orbits for a Periodic Hamiltonian System”, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 6:5 (1989), 331–346 | MR | Zbl
[11] Rabinowitz, P. H., “Homoclinics for a Singular Hamiltonian System”, Geometric Analysis and the Calculus of Variations, ed. J. Jost, Int. Press, Cambridge, Mass., 1996, 267–296 | MR | Zbl
[12] Rabinowitz, P. H. and Tanaka, K., “Some Results on Connecting Orbits for a Class of Hamiltonian Systems”, Math. Z., 206:3 (1991), 473–499 | DOI | MR | Zbl
[13] Serra, E., “Heteroclinic Orbits at Infinity for Two Classes of Hamiltonian Systems”, Boll. Un. Mat. Ital. B (7), 8:3 (1994), 615–639 | MR | Zbl
[14] Serra, E. and Terracini, S., “Noncollisions Solutions to Some Singular Minimisation Problems with Keplerian-Like Potentials”, Nonlinear Anal. Theory Methods Appl., 22:1 (1994), 45–62 | DOI | MR | Zbl
[15] Tanaka, K., “Homoclinic Orbits for a Singular Second Order Hamiltonian System”, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 7:5 (1990), 427–438 | MR | Zbl
[16] Tehrani, H., “Connecting Orbits for a Class of Singular Time-Periodic Second-Order Hamiltonian Systems”, Proc. Roy. Soc. Edinburgh Sect. A, 146:6 (2016), 1211–1241 | DOI | MR | Zbl