Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2024_20_4_a12, author = {D. N. Stepanov and A. V. Podobryaev}, title = {Numerical {Solution} of a {Left-Invariant} {Sub-Riemannian} {Problem} on the {Group} $SO(3)$}, journal = {Russian journal of nonlinear dynamics}, pages = {635--670}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2024_20_4_a12/} }
TY - JOUR AU - D. N. Stepanov AU - A. V. Podobryaev TI - Numerical Solution of a Left-Invariant Sub-Riemannian Problem on the Group $SO(3)$ JO - Russian journal of nonlinear dynamics PY - 2024 SP - 635 EP - 670 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2024_20_4_a12/ LA - en ID - ND_2024_20_4_a12 ER -
%0 Journal Article %A D. N. Stepanov %A A. V. Podobryaev %T Numerical Solution of a Left-Invariant Sub-Riemannian Problem on the Group $SO(3)$ %J Russian journal of nonlinear dynamics %D 2024 %P 635-670 %V 20 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2024_20_4_a12/ %G en %F ND_2024_20_4_a12
D. N. Stepanov; A. V. Podobryaev. Numerical Solution of a Left-Invariant Sub-Riemannian Problem on the Group $SO(3)$. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 4, pp. 635-670. http://geodesic.mathdoc.fr/item/ND_2024_20_4_a12/
[1] Cots, O., Numerical Toolbox in Python (Nutopy) to Solve Optimal Control Problems, inria.fr
[2] Agrachev, A. and Barilari, D., “Sub-Riemannian Structures on $3$D Lie Groups”, J. Dyn. Control Syst., 18:1 (2012), 21–44 | DOI | MR | Zbl
[3] Mat. Sb., 207:7 (2016), 29–56 (Russian) | DOI | DOI | MR | Zbl
[4] Boscain, U. and Rossi, F., “Invariant Carnot – Carathéodory Metrics on $S^3$, $SO(3)$, $SL(2)$ and Lens Spaces”, SIAM J. Control Optim., 47:4 (2008), 1851–1878 | DOI | MR | Zbl
[5] Sibirsk. Mat. Zh., 56:4 (2015), 762–774 (Russian) | DOI | MR | Zbl
[6] Petitot, J., “The Neurogeometry of Pinwheels As a Sub-Riemannian Contact Structure”, J. Physiol. Paris, 97:2–3 (2003), 265–309 | DOI
[7] Citti, G. and Sarti, A., “A Cortical Based Model of Perceptual Completion in the Roto-Translation Space”, J. Math. Imaging Vis., 24:3 (2006), 307–326 | DOI | MR | Zbl
[8] Neuromathematics of Vision, Lecture Notes in Morphog., eds. G. Citti, A. Sarti, Springer, Berlin, 2014, xviii, 367 pp. | MR | Zbl
[9] Mashtakov, A., Duits, R., Sachkov, Yu., Bekkers, E., and Beschastnyi, I., “Tracking of Lines in Spherical Images via Sub-Riemannian Geodesics on $SO(3)$”, J. Math. Imaging Vis., 58:2 (2017), 239–264 | DOI | MR | Zbl
[10] Mashtakov, A. P., “Sub-Riemannian Geometry in Image Processing and Modeling of the Human Visual System”, Russian J. Nonlinear Dyn., 15:4 (2019), 561–568 | MR | Zbl
[11] Bonnard, B., Caillau, J.-B., Sinclair, R., and Tanaka, M., “Conjugate and Cut Loci of a Two-Sphere of Revolution with Application to Optimal Control”, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 26:4 (2009), 1081–1098 | DOI | MR | Zbl
[12] Rakotoniaina, C., “Cut Locus of the B-Spheres”, Ann. Global Anal. Geom., 3:3 (1985), 313–327 | DOI | MR | Zbl
[13] Uspekhi Mat. Nauk, 77:1(463) (2022), 109–176 (Russian) | DOI | DOI | MR | Zbl
[14] Uspekhi Mat. Nauk, 78:1(469) (2023), 67–166 (Russian) | DOI | DOI | MR | Zbl
[15] Itoh, J. and Sinclair, R., “Thaw: A Tool for Approximating Cut Loci on a Triangulation of a Surface”, Exp. Math., 13:3 (2004), 309–325 | DOI | MR | Zbl
[16] Misztal, M. K., Bærentzen, J. A., Anton, F., and Markvorsen, S., “Cut Locus Construction Using Deformable Simplicial Complexes”, Proc. of the 8th Internat. Symp. on Voronoi Diagrams in Science and Engineering (ISVD, QingDao, China, Jun 2011), 134–141
[17] Dey, T. K. and Li, K., “Cut Locus and Topology from Surface Point Data”, Proc. of the 25th Annu. Symp. on Computational Geometry (CoCG'09, Aarhus, Denmark, Jun 2009), 125–134 | Zbl
[18] Mancinelli, C., Livesu, M., and Puppo, E., “Practical Computation of the Cut Locus on Discrete Surfaces”, Comput. Graph. Forum, 40:5 (2021), 261–273 | DOI
[19] Générau, F., Oudet, E., and Velichkov, B., “Numerical Computation of the Cut Locus via a Variational Approximation of the Distance Function”, ESAIM: Math. Model. Numer. Anal., 56:1 (2022), 105–120 | DOI | MR
[20] Crane, K., Weischedel, C., and Wardetzky, M., “Geodesics in Heat: A New Approach to Computing Distance Based on Heat Flow”, ACM Trans. Graph., 32:5 (2013), Art. 152, 11 pp. | DOI
[21] Facca, E., Berti, L., Fassò, F., and Putti, M., “Computing the Cut Locus of a Riemannian Manifold via Optimal Transport”, ESAIM: Math. Model. Numer. Anal., 56:6 (2022), 1939–1954 | DOI | MR | Zbl
[22] Sinclair, R. and Tanaka, M., “Loki: Software for Computing Cut Loci”, Exp. Math., 11:1 (2002), 1–25 | DOI | MR | Zbl
[23] Bonnard, B., Cots, O., and Jassionnesse, L., “Geometric and Numerical Techniques to Compute Conjugate and Cut Loci on Riemannian Surfaces”, Geometric Control Theory and Sub-Riemannian Geometry, papers from the Meeting on Geometric Control Theory and sub-Riemannian Geometry (Cortona, May 2012), Springer INdAM Ser., 5, eds. G. Stefani, U. Boscain, J.-P. Gauthier, A. Sarychev, M. Sigalotti, Springer, Cham, 2014, 53–72, xii, 384 pp. | DOI | MR | Zbl
[24] Uspekhi Mat. Nauk, 71:6(432) (2016), 3–36 (Russian) | DOI | DOI | MR | Zbl
[25] Vershik, A. M. and Gershkovich, V. Ya., “Nonholonomic Dynamical Systems, Geometry of Distributions and Variational Problems”, Dynamical Systems: VII. Integrable Systems Nonholonomic Dynamical Systems, Encyclopaedia Math. Sci., 16, eds. V. I. Arnol'd, S. P. Novikov, Springer, Berlin, 1994, 1–81, 344 pp.
[26] Agrachev, A., Barilari, D., and Boscain, U., A Comprehensive Introduction to Sub-Riemannian Geometry: From the Hamiltonian Viewpoint, with an appendix by I. Zelenko, Cambridge Stud. Adv. Math., 181, Cambridge Univ. Press, Cambridge, 2020, xviii, 745 pp. | MR | Zbl
[27] Sibirsk. Mat. Zh., 57:3 (2016), 527–542 | DOI | MR | Zbl
[28] Podobryaev, A. V. and Sachkov, Yu. L., “Cut Locus of a Left Invariant Riemannian Metric on $SO(3)$ in the Axisymmetric Case”, J. Geom. Phys., 110 (2016), 436–453 | DOI | MR | Zbl
[29] Dokl. Akad. Nauk, 95:6 (2017), 640–642 (Russian) | DOI | MR | Zbl
[30] Podobryaev, A. V. and Sachkov, Yu. L., “Symmetric Riemannian Problem on the Group of Proper Isometries of Hyperbolic Plane”, J. Dyn. Control Syst., 24:3 (2018), 391–423 | DOI | MR | Zbl
[31] Sachkov, Yu. L., “Cut Locus and Optimal Synthesis in the Sub-Riemannian Problem on the Group of Motions of a Plane”, ESAIM Control Optim. Calc. Var., 17:2 (2011), 293–321 | DOI | MR | Zbl
[32] Butt, Ya. A., Sachkov, Yu. L., and Bhatti, A. I., “Cut Locus and Optimal Synthesis in Sub-Riemannian Problem on the Lie Group $SH(2)$”, J. Dyn. Control Syst., 23:1 (2017), 155–196 | DOI | MR
[33] Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V., and Mishchenko, E. F., The Mathematical Theory of Optimal Processes, translated from the Russian by K. N. Trirogoff, ed. L. W. Neustadt, Wiley, New York, 1962, viii, 360 pp. | MR | Zbl
[34] Agrachev, A. A. and Sachkov, Yu. L., Control Theory from the Geometric Viewpoint, Encyclopaedia Math. Sci., 87, Springer, Berlin, 2004, xiv, 412 pp. | DOI | MR | Zbl
[35] Mat. Sb., 211:2 (2020), 125–140 (Russian) | DOI | DOI | MR | Zbl
[36] Tr. Mat. Inst. Steklova, 315 (2021), 202–210 (Russian) | DOI | DOI | MR | Zbl
[37] Hairer, E., Nørsett, S. P., and Wanner, G., Solving Ordinary Differential Equations: Vol. 1. Nonstiff Problems, Springer Ser. Comput. Math., 8, 2nd ed., Springer, New York, 1993, xvi, 528 pp. | MR
[38] Hairer, E., Nørsett, S. P., and Wanner, G., Solving Ordinary Differential Equations: Vol. 2. Stiff and Differential-Algebraic Problems, Springer Ser. Comput. Math., 14, 2nd ed., Springer, New York, 1996, xvi, 614 pp. | DOI | MR
[39] Powell, M. J. D., “A Hybrid Method for Nonlinear Equations”, Numerical Methods for Nonlinear Algebraic Equations, ed. P. Rabinowitz, Gordon and Breach, New York, 1970, 87–114 | MR
[40] Marquardt, D. W., “An Algorithm for Least-Squares Estimation of Nonlinear Parameters”, J. Soc. Indust. Appl. Math., 11:2 (1963), 431–441 | DOI | MR | Zbl
[41] Caillau, J.-B., Cots, O., and Gergaud, J., “Differential Continuation for Regular Optimal Control Problems”, Optim. Methods Softw., 27:2 (2012), 177–196 | DOI | MR | Zbl
[42] Allgower, E. L. and Georg, K., Introduction to Numerical Continuation Methods, reprint of the 1990 edition (Berlin: Springer), Classics in Appl. Math., 45, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Penn., 2003, xxvi, 388 pp. | MR | Zbl
[43] Hascoët, L. and Pascual, V., “The Tapenade Automatic Differentiation Tool: Principles, Model, and Specification”, ACM Trans. Math. Softw., 39:3 (2013), Art. 20, 43 pp. ; , 2024 tapenade.inria.fr | DOI | MR | MR | Zbl
[44] Agrachev, A. A., “Exponential Mappings for Contact Sub-Riemannian Structures”, J. Dynam. Control Systems, 2:3 (1996), 321–358 | DOI | MR | Zbl