Numerical Solution of a Left-Invariant Sub-Riemannian Problem on the Group $SO(3)$
Russian journal of nonlinear dynamics, Tome 20 (2024) no. 4, pp. 635-670.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a left-invariant sub-Riemannian problem on the Lie group of rotations of a three-dimensional space. We find the cut locus numerically, in fact we construct the optimal synthesis numerically, i. e., the shortest arcs. The software package nutopy designed for the numerical solution of optimal control problems is used. With the help of this package we investigate sub-Riemannian geodesics, conjugate points, Maxwell points and diffeomorphic domains of the exponential map. We describe some operating features of this software package.
Keywords: sub-Riemannian geometry, shortest arcs, caustic, cut time, cut locus, numerical solution
@article{ND_2024_20_4_a12,
     author = {D. N. Stepanov and A. V. Podobryaev},
     title = {Numerical {Solution} of a {Left-Invariant} {Sub-Riemannian} {Problem} on the {Group} $SO(3)$},
     journal = {Russian journal of nonlinear dynamics},
     pages = {635--670},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2024_20_4_a12/}
}
TY  - JOUR
AU  - D. N. Stepanov
AU  - A. V. Podobryaev
TI  - Numerical Solution of a Left-Invariant Sub-Riemannian Problem on the Group $SO(3)$
JO  - Russian journal of nonlinear dynamics
PY  - 2024
SP  - 635
EP  - 670
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2024_20_4_a12/
LA  - en
ID  - ND_2024_20_4_a12
ER  - 
%0 Journal Article
%A D. N. Stepanov
%A A. V. Podobryaev
%T Numerical Solution of a Left-Invariant Sub-Riemannian Problem on the Group $SO(3)$
%J Russian journal of nonlinear dynamics
%D 2024
%P 635-670
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2024_20_4_a12/
%G en
%F ND_2024_20_4_a12
D. N. Stepanov; A. V. Podobryaev. Numerical Solution of a Left-Invariant Sub-Riemannian Problem on the Group $SO(3)$. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 4, pp. 635-670. http://geodesic.mathdoc.fr/item/ND_2024_20_4_a12/

[1] Cots, O., Numerical Toolbox in Python (Nutopy) to Solve Optimal Control Problems, inria.fr

[2] Agrachev, A. and Barilari, D., “Sub-Riemannian Structures on $3$D Lie Groups”, J. Dyn. Control Syst., 18:1 (2012), 21–44 | DOI | MR | Zbl

[3] Mat. Sb., 207:7 (2016), 29–56 (Russian) | DOI | DOI | MR | Zbl

[4] Boscain, U. and Rossi, F., “Invariant Carnot – Carathéodory Metrics on $S^3$, $SO(3)$, $SL(2)$ and Lens Spaces”, SIAM J. Control Optim., 47:4 (2008), 1851–1878 | DOI | MR | Zbl

[5] Sibirsk. Mat. Zh., 56:4 (2015), 762–774 (Russian) | DOI | MR | Zbl

[6] Petitot, J., “The Neurogeometry of Pinwheels As a Sub-Riemannian Contact Structure”, J. Physiol. Paris, 97:2–3 (2003), 265–309 | DOI

[7] Citti, G. and Sarti, A., “A Cortical Based Model of Perceptual Completion in the Roto-Translation Space”, J. Math. Imaging Vis., 24:3 (2006), 307–326 | DOI | MR | Zbl

[8] Neuromathematics of Vision, Lecture Notes in Morphog., eds. G. Citti, A. Sarti, Springer, Berlin, 2014, xviii, 367 pp. | MR | Zbl

[9] Mashtakov, A., Duits, R., Sachkov, Yu., Bekkers, E., and Beschastnyi, I., “Tracking of Lines in Spherical Images via Sub-Riemannian Geodesics on $SO(3)$”, J. Math. Imaging Vis., 58:2 (2017), 239–264 | DOI | MR | Zbl

[10] Mashtakov, A. P., “Sub-Riemannian Geometry in Image Processing and Modeling of the Human Visual System”, Russian J. Nonlinear Dyn., 15:4 (2019), 561–568 | MR | Zbl

[11] Bonnard, B., Caillau, J.-B., Sinclair, R., and Tanaka, M., “Conjugate and Cut Loci of a Two-Sphere of Revolution with Application to Optimal Control”, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 26:4 (2009), 1081–1098 | DOI | MR | Zbl

[12] Rakotoniaina, C., “Cut Locus of the B-Spheres”, Ann. Global Anal. Geom., 3:3 (1985), 313–327 | DOI | MR | Zbl

[13] Uspekhi Mat. Nauk, 77:1(463) (2022), 109–176 (Russian) | DOI | DOI | MR | Zbl

[14] Uspekhi Mat. Nauk, 78:1(469) (2023), 67–166 (Russian) | DOI | DOI | MR | Zbl

[15] Itoh, J. and Sinclair, R., “Thaw: A Tool for Approximating Cut Loci on a Triangulation of a Surface”, Exp. Math., 13:3 (2004), 309–325 | DOI | MR | Zbl

[16] Misztal, M. K., Bærentzen, J. A., Anton, F., and Markvorsen, S., “Cut Locus Construction Using Deformable Simplicial Complexes”, Proc. of the 8th Internat. Symp. on Voronoi Diagrams in Science and Engineering (ISVD, QingDao, China, Jun 2011), 134–141

[17] Dey, T. K. and Li, K., “Cut Locus and Topology from Surface Point Data”, Proc. of the 25th Annu. Symp. on Computational Geometry (CoCG'09, Aarhus, Denmark, Jun 2009), 125–134 | Zbl

[18] Mancinelli, C., Livesu, M., and Puppo, E., “Practical Computation of the Cut Locus on Discrete Surfaces”, Comput. Graph. Forum, 40:5 (2021), 261–273 | DOI

[19] Générau, F., Oudet, E., and Velichkov, B., “Numerical Computation of the Cut Locus via a Variational Approximation of the Distance Function”, ESAIM: Math. Model. Numer. Anal., 56:1 (2022), 105–120 | DOI | MR

[20] Crane, K., Weischedel, C., and Wardetzky, M., “Geodesics in Heat: A New Approach to Computing Distance Based on Heat Flow”, ACM Trans. Graph., 32:5 (2013), Art. 152, 11 pp. | DOI

[21] Facca, E., Berti, L., Fassò, F., and Putti, M., “Computing the Cut Locus of a Riemannian Manifold via Optimal Transport”, ESAIM: Math. Model. Numer. Anal., 56:6 (2022), 1939–1954 | DOI | MR | Zbl

[22] Sinclair, R. and Tanaka, M., “Loki: Software for Computing Cut Loci”, Exp. Math., 11:1 (2002), 1–25 | DOI | MR | Zbl

[23] Bonnard, B., Cots, O., and Jassionnesse, L., “Geometric and Numerical Techniques to Compute Conjugate and Cut Loci on Riemannian Surfaces”, Geometric Control Theory and Sub-Riemannian Geometry, papers from the Meeting on Geometric Control Theory and sub-Riemannian Geometry (Cortona, May 2012), Springer INdAM Ser., 5, eds. G. Stefani, U. Boscain, J.-P. Gauthier, A. Sarychev, M. Sigalotti, Springer, Cham, 2014, 53–72, xii, 384 pp. | DOI | MR | Zbl

[24] Uspekhi Mat. Nauk, 71:6(432) (2016), 3–36 (Russian) | DOI | DOI | MR | Zbl

[25] Vershik, A. M. and Gershkovich, V. Ya., “Nonholonomic Dynamical Systems, Geometry of Distributions and Variational Problems”, Dynamical Systems: VII. Integrable Systems Nonholonomic Dynamical Systems, Encyclopaedia Math. Sci., 16, eds. V. I. Arnol'd, S. P. Novikov, Springer, Berlin, 1994, 1–81, 344 pp.

[26] Agrachev, A., Barilari, D., and Boscain, U., A Comprehensive Introduction to Sub-Riemannian Geometry: From the Hamiltonian Viewpoint, with an appendix by I. Zelenko, Cambridge Stud. Adv. Math., 181, Cambridge Univ. Press, Cambridge, 2020, xviii, 745 pp. | MR | Zbl

[27] Sibirsk. Mat. Zh., 57:3 (2016), 527–542 | DOI | MR | Zbl

[28] Podobryaev, A. V. and Sachkov, Yu. L., “Cut Locus of a Left Invariant Riemannian Metric on $SO(3)$ in the Axisymmetric Case”, J. Geom. Phys., 110 (2016), 436–453 | DOI | MR | Zbl

[29] Dokl. Akad. Nauk, 95:6 (2017), 640–642 (Russian) | DOI | MR | Zbl

[30] Podobryaev, A. V. and Sachkov, Yu. L., “Symmetric Riemannian Problem on the Group of Proper Isometries of Hyperbolic Plane”, J. Dyn. Control Syst., 24:3 (2018), 391–423 | DOI | MR | Zbl

[31] Sachkov, Yu. L., “Cut Locus and Optimal Synthesis in the Sub-Riemannian Problem on the Group of Motions of a Plane”, ESAIM Control Optim. Calc. Var., 17:2 (2011), 293–321 | DOI | MR | Zbl

[32] Butt, Ya. A., Sachkov, Yu. L., and Bhatti, A. I., “Cut Locus and Optimal Synthesis in Sub-Riemannian Problem on the Lie Group $SH(2)$”, J. Dyn. Control Syst., 23:1 (2017), 155–196 | DOI | MR

[33] Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V., and Mishchenko, E. F., The Mathematical Theory of Optimal Processes, translated from the Russian by K. N. Trirogoff, ed. L. W. Neustadt, Wiley, New York, 1962, viii, 360 pp. | MR | Zbl

[34] Agrachev, A. A. and Sachkov, Yu. L., Control Theory from the Geometric Viewpoint, Encyclopaedia Math. Sci., 87, Springer, Berlin, 2004, xiv, 412 pp. | DOI | MR | Zbl

[35] Mat. Sb., 211:2 (2020), 125–140 (Russian) | DOI | DOI | MR | Zbl

[36] Tr. Mat. Inst. Steklova, 315 (2021), 202–210 (Russian) | DOI | DOI | MR | Zbl

[37] Hairer, E., Nørsett, S. P., and Wanner, G., Solving Ordinary Differential Equations: Vol. 1. Nonstiff Problems, Springer Ser. Comput. Math., 8, 2nd ed., Springer, New York, 1993, xvi, 528 pp. | MR

[38] Hairer, E., Nørsett, S. P., and Wanner, G., Solving Ordinary Differential Equations: Vol. 2. Stiff and Differential-Algebraic Problems, Springer Ser. Comput. Math., 14, 2nd ed., Springer, New York, 1996, xvi, 614 pp. | DOI | MR

[39] Powell, M. J. D., “A Hybrid Method for Nonlinear Equations”, Numerical Methods for Nonlinear Algebraic Equations, ed. P. Rabinowitz, Gordon and Breach, New York, 1970, 87–114 | MR

[40] Marquardt, D. W., “An Algorithm for Least-Squares Estimation of Nonlinear Parameters”, J. Soc. Indust. Appl. Math., 11:2 (1963), 431–441 | DOI | MR | Zbl

[41] Caillau, J.-B., Cots, O., and Gergaud, J., “Differential Continuation for Regular Optimal Control Problems”, Optim. Methods Softw., 27:2 (2012), 177–196 | DOI | MR | Zbl

[42] Allgower, E. L. and Georg, K., Introduction to Numerical Continuation Methods, reprint of the 1990 edition (Berlin: Springer), Classics in Appl. Math., 45, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Penn., 2003, xxvi, 388 pp. | MR | Zbl

[43] Hascoët, L. and Pascual, V., “The Tapenade Automatic Differentiation Tool: Principles, Model, and Specification”, ACM Trans. Math. Softw., 39:3 (2013), Art. 20, 43 pp. ; , 2024 tapenade.inria.fr | DOI | MR | MR | Zbl

[44] Agrachev, A. A., “Exponential Mappings for Contact Sub-Riemannian Structures”, J. Dynam. Control Systems, 2:3 (1996), 321–358 | DOI | MR | Zbl