The Lorentzian Problem on 2-Dimensional de Sitter Space
Russian journal of nonlinear dynamics, Tome 20 (2024) no. 4, pp. 619-633
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper considers the Lorentzian optimal control problem on two-dimensional de Sitter
space. Normal and abnormal optimal trajectories are studied using the Pontryagin maximum
principle. Attainable sets, spheres and distance in the Lorentzian metric are computed. Killing
vector fields and isometries are described.
Keywords:
Lorentzian geometry, de Sitter space, optimal control
@article{ND_2024_20_4_a11,
author = {V. S. Petukhov and Yu. L. Sachkov},
title = {The {Lorentzian} {Problem} on {2-Dimensional} de {Sitter} {Space}},
journal = {Russian journal of nonlinear dynamics},
pages = {619--633},
publisher = {mathdoc},
volume = {20},
number = {4},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ND_2024_20_4_a11/}
}
V. S. Petukhov; Yu. L. Sachkov. The Lorentzian Problem on 2-Dimensional de Sitter Space. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 4, pp. 619-633. http://geodesic.mathdoc.fr/item/ND_2024_20_4_a11/