Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2024_20_4_a11, author = {V. S. Petukhov and Yu. L. Sachkov}, title = {The {Lorentzian} {Problem} on {2-Dimensional} de {Sitter} {Space}}, journal = {Russian journal of nonlinear dynamics}, pages = {619--633}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2024_20_4_a11/} }
V. S. Petukhov; Yu. L. Sachkov. The Lorentzian Problem on 2-Dimensional de Sitter Space. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 4, pp. 619-633. http://geodesic.mathdoc.fr/item/ND_2024_20_4_a11/
[1] Beem, J. K., Ehrlich, P. E., and Easley, K. L., Global Lorentzian Geometry, Monogr. Textbooks Pure Appl. Math., 202, 2nd ed., Dekker, New York, 1996, xiv, 635 pp. | MR | Zbl
[2] Wolf, J. A., Spaces of Constant Curvature, 6th ed., AMS Chelsea Publ., Providence, R.I., 2011, xviii, 424 pp. | MR | Zbl
[3] O'Neill, B., Semi-Riemannian Geometry: With Applications to Relativity, Acad. Press, New York, 1983, 488 pp. | MR | Zbl
[4] Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V., and Mishchenko, E. F., The Mathematical Theory of Optimal Processes, ed. L. W. Neustadt, Wiley, New York, 1962, viii, 360 pp. | MR | Zbl
[5] Agrachev, A. A. and Sachkov, Yu. L., Control Theory from the Geometric Viewpoint, Encyclopaedia Math. Sci., 87, Springer, Berlin, 2004, xiv, 412 pp. | DOI | MR | Zbl
[6] Sachkov, Yu. L., Introduction to Geometric Control, Springer Optim. Appl., 192, Springer, Cham, 2022, xvii, 162 pp. | MR | Zbl
[7] Krantz, S. G. and Parks, H. R., The Implicit Function Theorem: History, Theory, and Applications, Birkhäuser, Boston, Mass., 2002, xii, 163 pp. | MR | Zbl
[8] Differ. Uravn., 59:12 (2023), 1702–1709 (Russian) | DOI | DOI | MR | Zbl
[9] Hadamard, J., “Les surfaces à courbures opposées et leurs lignes géodésique”, J. Math. Pures Appl. (5), 4 (1898), 27–73
[10] Jacobson, N., Lie Algebras, Dover, New York, 1979, ix, 331 pp. | MR