The Lorentzian Problem on 2-Dimensional de Sitter Space
Russian journal of nonlinear dynamics, Tome 20 (2024) no. 4, pp. 619-633.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper considers the Lorentzian optimal control problem on two-dimensional de Sitter space. Normal and abnormal optimal trajectories are studied using the Pontryagin maximum principle. Attainable sets, spheres and distance in the Lorentzian metric are computed. Killing vector fields and isometries are described.
Keywords: Lorentzian geometry, de Sitter space, optimal control
@article{ND_2024_20_4_a11,
     author = {V. S. Petukhov and Yu. L. Sachkov},
     title = {The {Lorentzian} {Problem} on {2-Dimensional} de {Sitter} {Space}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {619--633},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2024_20_4_a11/}
}
TY  - JOUR
AU  - V. S. Petukhov
AU  - Yu. L. Sachkov
TI  - The Lorentzian Problem on 2-Dimensional de Sitter Space
JO  - Russian journal of nonlinear dynamics
PY  - 2024
SP  - 619
EP  - 633
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2024_20_4_a11/
LA  - en
ID  - ND_2024_20_4_a11
ER  - 
%0 Journal Article
%A V. S. Petukhov
%A Yu. L. Sachkov
%T The Lorentzian Problem on 2-Dimensional de Sitter Space
%J Russian journal of nonlinear dynamics
%D 2024
%P 619-633
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2024_20_4_a11/
%G en
%F ND_2024_20_4_a11
V. S. Petukhov; Yu. L. Sachkov. The Lorentzian Problem on 2-Dimensional de Sitter Space. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 4, pp. 619-633. http://geodesic.mathdoc.fr/item/ND_2024_20_4_a11/

[1] Beem, J. K., Ehrlich, P. E., and Easley, K. L., Global Lorentzian Geometry, Monogr. Textbooks Pure Appl. Math., 202, 2nd ed., Dekker, New York, 1996, xiv, 635 pp. | MR | Zbl

[2] Wolf, J. A., Spaces of Constant Curvature, 6th ed., AMS Chelsea Publ., Providence, R.I., 2011, xviii, 424 pp. | MR | Zbl

[3] O'Neill, B., Semi-Riemannian Geometry: With Applications to Relativity, Acad. Press, New York, 1983, 488 pp. | MR | Zbl

[4] Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V., and Mishchenko, E. F., The Mathematical Theory of Optimal Processes, ed. L. W. Neustadt, Wiley, New York, 1962, viii, 360 pp. | MR | Zbl

[5] Agrachev, A. A. and Sachkov, Yu. L., Control Theory from the Geometric Viewpoint, Encyclopaedia Math. Sci., 87, Springer, Berlin, 2004, xiv, 412 pp. | DOI | MR | Zbl

[6] Sachkov, Yu. L., Introduction to Geometric Control, Springer Optim. Appl., 192, Springer, Cham, 2022, xvii, 162 pp. | MR | Zbl

[7] Krantz, S. G. and Parks, H. R., The Implicit Function Theorem: History, Theory, and Applications, Birkhäuser, Boston, Mass., 2002, xii, 163 pp. | MR | Zbl

[8] Differ. Uravn., 59:12 (2023), 1702–1709 (Russian) | DOI | DOI | MR | Zbl

[9] Hadamard, J., “Les surfaces à courbures opposées et leurs lignes géodésique”, J. Math. Pures Appl. (5), 4 (1898), 27–73

[10] Jacobson, N., Lie Algebras, Dover, New York, 1979, ix, 331 pp. | MR