The Lorentzian Problem on 2-Dimensional de Sitter Space
Russian journal of nonlinear dynamics, Tome 20 (2024) no. 4, pp. 619-633

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper considers the Lorentzian optimal control problem on two-dimensional de Sitter space. Normal and abnormal optimal trajectories are studied using the Pontryagin maximum principle. Attainable sets, spheres and distance in the Lorentzian metric are computed. Killing vector fields and isometries are described.
Keywords: Lorentzian geometry, de Sitter space, optimal control
@article{ND_2024_20_4_a11,
     author = {V. S. Petukhov and Yu. L. Sachkov},
     title = {The {Lorentzian} {Problem} on {2-Dimensional} de {Sitter} {Space}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {619--633},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2024_20_4_a11/}
}
TY  - JOUR
AU  - V. S. Petukhov
AU  - Yu. L. Sachkov
TI  - The Lorentzian Problem on 2-Dimensional de Sitter Space
JO  - Russian journal of nonlinear dynamics
PY  - 2024
SP  - 619
EP  - 633
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2024_20_4_a11/
LA  - en
ID  - ND_2024_20_4_a11
ER  - 
%0 Journal Article
%A V. S. Petukhov
%A Yu. L. Sachkov
%T The Lorentzian Problem on 2-Dimensional de Sitter Space
%J Russian journal of nonlinear dynamics
%D 2024
%P 619-633
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2024_20_4_a11/
%G en
%F ND_2024_20_4_a11
V. S. Petukhov; Yu. L. Sachkov. The Lorentzian Problem on 2-Dimensional de Sitter Space. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 4, pp. 619-633. http://geodesic.mathdoc.fr/item/ND_2024_20_4_a11/