Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2024_20_3_a5, author = {M. A. Korepanov and M. R. Koroleva and E. A. Mitrukova and A. N. Nechay}, title = {Mathematical {Modeling} of the {Gas-Jet} {Target} for {Extreme} {Ultraviolet} {Laser}}, journal = {Russian journal of nonlinear dynamics}, pages = {413--424}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2024_20_3_a5/} }
TY - JOUR AU - M. A. Korepanov AU - M. R. Koroleva AU - E. A. Mitrukova AU - A. N. Nechay TI - Mathematical Modeling of the Gas-Jet Target for Extreme Ultraviolet Laser JO - Russian journal of nonlinear dynamics PY - 2024 SP - 413 EP - 424 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2024_20_3_a5/ LA - en ID - ND_2024_20_3_a5 ER -
%0 Journal Article %A M. A. Korepanov %A M. R. Koroleva %A E. A. Mitrukova %A A. N. Nechay %T Mathematical Modeling of the Gas-Jet Target for Extreme Ultraviolet Laser %J Russian journal of nonlinear dynamics %D 2024 %P 413-424 %V 20 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2024_20_3_a5/ %G en %F ND_2024_20_3_a5
M. A. Korepanov; M. R. Koroleva; E. A. Mitrukova; A. N. Nechay. Mathematical Modeling of the Gas-Jet Target for Extreme Ultraviolet Laser. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 3, pp. 413-424. http://geodesic.mathdoc.fr/item/ND_2024_20_3_a5/
[1] Tallents, G. J., Aslanyan, V., Rossall, A., Wilson, S., and Shahzad, M., “The Application of Extreme Ultra-Violet Lasers in Plasma Heating and Diagnosis”, Proc. of the International Society for Optical Engineering (SPIE, San Diego, Calif., 2015), Vol. 9589, Art. 958903, 6 pp.
[2] Fiedorowicz, H., Bartnik, A., Wachulak, P. W., Jarocki, R., Kostecki, J., Szczurek, M., Ahad, I. U., Fok, R., Szczurek, A., and Wegrzynski, L., “Application of Laser Plasma Sources of Soft X-Rays and Extreme Ultraviolet (EUV) in Imaging, Processing Materials and Photoionization Studies”, X-Ray Lasers 2014, Springer Proc. in Phys., 169, eds. J. Rocca, C. Menoni, M. Marconi, Springer, Cham, 2016, 369–377, xxxix, 416 pp. | DOI
[3] Kvantovaya Elektronika, 50:4 (2020), 408–413 (Russian) | DOI
[4] Nechay, A. N., Perekalov, A. A., Chkhalo, N. I., Salashchenko, N. N., Korepanov, M. A., and Koroleva, M. R., “Emission Properties of Targets Based on Shock Waves Excited by Pulsed Laser Radiation”, Opt. Laser Technol., 142 (2021), Art. 107250 | DOI
[5] Aslanyan, V., Extreme Ultraviolet Lasers and Their Interactions with Matter, PhD Dissertation, University of York, York, UK, 2016, 152 pp.
[6] Uspekhi Fiz. Nauk, 189:3 (2019), 323–334 (Russian) | DOI | DOI
[7] Boldarev, A. S., Gasilova, I. V., and Sharova, Yu. S., Mathematical Modelling of the Cluster Targets for Femtosecondlaser-Cluster-Driven Experiments, Preprint No 150, Keldysh Institute of Applied Mathematics, Moscow, 2018, 22 pp. (Russian)
[8] Kooijman, G., A Laser Plasma EUV Source Based on a Supersonic Xenon Gas Jet Target: Backlighting, Parameter Study and Prepulse Experiments, Master Thesis, Eindhoven University of Technology, Eindhoven, 2002, 86 pp.
[9] Kuroda, H., Baba, M., Ganeev, R. A., Suzuki, M., Yoneya, S., “Highly Directive High Harmonic Generation from Solid Target Plasma for Biomedical and Medicine Applications”, X-Ray Lasers 2010, Springer Proc. in Phys., 136, eds. J. Lee, C. H. Nam, K. A. Janulewicz, Springer, Dordrecht, 2011, 221–230 | DOI
[10] Gnatchenko, E. V., Nechay, A. N., Samovarov, V. N., and Tkachenko, A. A., “Polarization Bremsstrahlung from Xenon Atoms and Clusters: A Cooperative Effect Contribution”, Phys. Rev. A, 82:1 (2010), Art. 012702, 6 pp. | DOI
[11] Koroleva, M. R., Mitrukova, E. A., and Korepanov, M. A., “Numerical Investigation of Flows with Condenation in Micronozzles”, J. Phys. Conf. Ser., 2057:1 (2021), Art. 012016, 6 pp.
[12] Bogdaniuk, D. O., Volkov, K. N., Emelyanov, V. N., and Pustovalov, A. V., “Gas Dynamics of Stationary Supersonic Gas Jets with Inert Particles Exhausting into a Medium with Low Pressure”, Nauchno-Tekhn. Vestn. Inform. Tekhnol., Mekh. i Optiki, 23:2 (2023), 403–412 (Russian)
[13] Poverkhnost'. Rentgen., Sinkhrotr. i Neitron. Issled., 2017, no. 5, 17–22 (Russian) | DOI
[14] Reid, R. C., Prausnitz, J. M., and Sherwood, T. K., The Properties of Gases and Liquids, 3rd ed., McGraw-Hill, New York, 1977, 688 pp.
[15] Numerical Solution of Multidimensional Problems of Gas Dynamics, ed. S. K. Godunov, Nauka, Moscow, 1976, 400 pp. (Russian) | MR
[16] Koroleva, M. R., Mishenkova, O. V., Raeder, T., Tenenev, V. A., and Chernova, A. A., “Numerical Simulation of the Process of Activation of the Safety Valve”, Kompyuternye Issledovaniya i Modelirovanie, 10:4 (2018), 495–509 (Russian)
[17] Raeder, T., Tenenev, V. A., and Chernova, A. A., “Determination of Flow Characteristics in Technological Processes with Controlled Pressure”, Instruments and Methods of Measurement, 11:3 (2020), 204–211
[18] Raeder, T., Tenenev, V. A., and Chernova, A. A., “Numerical Simulation of Unstable Operating Modes of a Safety Valve”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2020, no. 68, 141–157 (Russian) | MR
[19] Raeder, T., Tenenev, V., and Koroleva, M., “Numerical Simulation of the Working Process in a Safety Valve with Additional Gas-Dynamic Coupling”, Intellekt. Sist. Proizv., 18:3 (2020), 118–126 (Russian) | DOI
[20] Bocharova, O. V. and Lebedev, M. G., “Simulation of Nonstationary Interaction of a Jet with a Barrier”, Matem. Model., 19:8 (2007), 31–36 (Russian) | Zbl
[21] Pinchukov, V. I., “Modeling of Dynamics of Unsteady Flows near Blunt Bodies for Large Time Intervals”, Vychislitel'nye Tekhnologii, 18:1 (2013), 74–86 (Russian) | MR