Mathematical Modeling of the Gas-Jet Target for Extreme Ultraviolet Laser
Russian journal of nonlinear dynamics, Tome 20 (2024) no. 3, pp. 413-424.

Voir la notice de l'article provenant de la source Math-Net.Ru

The formation of a supersonic gas target for lasers that operate in the extreme ultraviolet wavelengths is considered. The gas target is generated in the interaction zone of two opposite supersonic gas jets. The emission properties of inert gas targets were investigated experimentally. The distributions of the emission radiation intensity for argon, krypton and carbon dioxide were obtained and the shapes of the emission zone were detected. The experimental conditions were reproduced in numerical experiments. The mathematical model of viscous compressible gas was used to model the gas dynamics of supersonic gas jets. The problem was solved in a two-dimensional axisymmetric setting for argon. The obtained distributions of the main gasdynamic quantities made it possible to detail the flow features and estimate the size of the emission zone, as well as the density level corresponding to this zone. It was demonstrated that the results of calculations qualitatively agree with the experimental data. In addition, it was found that the density level of the emission region with the required extreme ultraviolet intensity factor can be obtained by monitoring the total pressure.
Keywords: extreme ultraviolet laser, gas target, argon, experiment, mathematical modeling, opposite supersonic nozzles
@article{ND_2024_20_3_a5,
     author = {M. A. Korepanov and M. R. Koroleva and E. A. Mitrukova and A. N. Nechay},
     title = {Mathematical {Modeling} of the {Gas-Jet} {Target} for {Extreme} {Ultraviolet} {Laser}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {413--424},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2024_20_3_a5/}
}
TY  - JOUR
AU  - M. A. Korepanov
AU  - M. R. Koroleva
AU  - E. A. Mitrukova
AU  - A. N. Nechay
TI  - Mathematical Modeling of the Gas-Jet Target for Extreme Ultraviolet Laser
JO  - Russian journal of nonlinear dynamics
PY  - 2024
SP  - 413
EP  - 424
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2024_20_3_a5/
LA  - en
ID  - ND_2024_20_3_a5
ER  - 
%0 Journal Article
%A M. A. Korepanov
%A M. R. Koroleva
%A E. A. Mitrukova
%A A. N. Nechay
%T Mathematical Modeling of the Gas-Jet Target for Extreme Ultraviolet Laser
%J Russian journal of nonlinear dynamics
%D 2024
%P 413-424
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2024_20_3_a5/
%G en
%F ND_2024_20_3_a5
M. A. Korepanov; M. R. Koroleva; E. A. Mitrukova; A. N. Nechay. Mathematical Modeling of the Gas-Jet Target for Extreme Ultraviolet Laser. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 3, pp. 413-424. http://geodesic.mathdoc.fr/item/ND_2024_20_3_a5/

[1] Tallents, G. J., Aslanyan, V., Rossall, A., Wilson, S., and Shahzad, M., “The Application of Extreme Ultra-Violet Lasers in Plasma Heating and Diagnosis”, Proc. of the International Society for Optical Engineering (SPIE, San Diego, Calif., 2015), Vol. 9589, Art. 958903, 6 pp.

[2] Fiedorowicz, H., Bartnik, A., Wachulak, P. W., Jarocki, R., Kostecki, J., Szczurek, M., Ahad, I. U., Fok, R., Szczurek, A., and Wegrzynski, L., “Application of Laser Plasma Sources of Soft X-Rays and Extreme Ultraviolet (EUV) in Imaging, Processing Materials and Photoionization Studies”, X-Ray Lasers 2014, Springer Proc. in Phys., 169, eds. J. Rocca, C. Menoni, M. Marconi, Springer, Cham, 2016, 369–377, xxxix, 416 pp. | DOI

[3] Kvantovaya Elektronika, 50:4 (2020), 408–413 (Russian) | DOI

[4] Nechay, A. N., Perekalov, A. A., Chkhalo, N. I., Salashchenko, N. N., Korepanov, M. A., and Koroleva, M. R., “Emission Properties of Targets Based on Shock Waves Excited by Pulsed Laser Radiation”, Opt. Laser Technol., 142 (2021), Art. 107250 | DOI

[5] Aslanyan, V., Extreme Ultraviolet Lasers and Their Interactions with Matter, PhD Dissertation, University of York, York, UK, 2016, 152 pp.

[6] Uspekhi Fiz. Nauk, 189:3 (2019), 323–334 (Russian) | DOI | DOI

[7] Boldarev, A. S., Gasilova, I. V., and Sharova, Yu. S., Mathematical Modelling of the Cluster Targets for Femtosecondlaser-Cluster-Driven Experiments, Preprint No 150, Keldysh Institute of Applied Mathematics, Moscow, 2018, 22 pp. (Russian)

[8] Kooijman, G., A Laser Plasma EUV Source Based on a Supersonic Xenon Gas Jet Target: Backlighting, Parameter Study and Prepulse Experiments, Master Thesis, Eindhoven University of Technology, Eindhoven, 2002, 86 pp.

[9] Kuroda, H., Baba, M., Ganeev, R. A., Suzuki, M., Yoneya, S., “Highly Directive High Harmonic Generation from Solid Target Plasma for Biomedical and Medicine Applications”, X-Ray Lasers 2010, Springer Proc. in Phys., 136, eds. J. Lee, C. H. Nam, K. A. Janulewicz, Springer, Dordrecht, 2011, 221–230 | DOI

[10] Gnatchenko, E. V., Nechay, A. N., Samovarov, V. N., and Tkachenko, A. A., “Polarization Bremsstrahlung from Xenon Atoms and Clusters: A Cooperative Effect Contribution”, Phys. Rev. A, 82:1 (2010), Art. 012702, 6 pp. | DOI

[11] Koroleva, M. R., Mitrukova, E. A., and Korepanov, M. A., “Numerical Investigation of Flows with Condenation in Micronozzles”, J. Phys. Conf. Ser., 2057:1 (2021), Art. 012016, 6 pp.

[12] Bogdaniuk, D. O., Volkov, K. N., Emelyanov, V. N., and Pustovalov, A. V., “Gas Dynamics of Stationary Supersonic Gas Jets with Inert Particles Exhausting into a Medium with Low Pressure”, Nauchno-Tekhn. Vestn. Inform. Tekhnol., Mekh. i Optiki, 23:2 (2023), 403–412 (Russian)

[13] Poverkhnost'. Rentgen., Sinkhrotr. i Neitron. Issled., 2017, no. 5, 17–22 (Russian) | DOI

[14] Reid, R. C., Prausnitz, J. M., and Sherwood, T. K., The Properties of Gases and Liquids, 3rd ed., McGraw-Hill, New York, 1977, 688 pp.

[15] Numerical Solution of Multidimensional Problems of Gas Dynamics, ed. S. K. Godunov, Nauka, Moscow, 1976, 400 pp. (Russian) | MR

[16] Koroleva, M. R., Mishenkova, O. V., Raeder, T., Tenenev, V. A., and Chernova, A. A., “Numerical Simulation of the Process of Activation of the Safety Valve”, Kompyuternye Issledovaniya i Modelirovanie, 10:4 (2018), 495–509 (Russian)

[17] Raeder, T., Tenenev, V. A., and Chernova, A. A., “Determination of Flow Characteristics in Technological Processes with Controlled Pressure”, Instruments and Methods of Measurement, 11:3 (2020), 204–211

[18] Raeder, T., Tenenev, V. A., and Chernova, A. A., “Numerical Simulation of Unstable Operating Modes of a Safety Valve”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2020, no. 68, 141–157 (Russian) | MR

[19] Raeder, T., Tenenev, V., and Koroleva, M., “Numerical Simulation of the Working Process in a Safety Valve with Additional Gas-Dynamic Coupling”, Intellekt. Sist. Proizv., 18:3 (2020), 118–126 (Russian) | DOI

[20] Bocharova, O. V. and Lebedev, M. G., “Simulation of Nonstationary Interaction of a Jet with a Barrier”, Matem. Model., 19:8 (2007), 31–36 (Russian) | Zbl

[21] Pinchukov, V. I., “Modeling of Dynamics of Unsteady Flows near Blunt Bodies for Large Time Intervals”, Vychislitel'nye Tekhnologii, 18:1 (2013), 74–86 (Russian) | MR