Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2024_20_3_a4, author = {M. R. Koroleva and O. V. Mishchenkova and A. A. Chernova}, title = {Original {Methods} and {Approaches} to {Numerical} {Simulation} of {Physical} {Processes} in {Fast-Response} {Technical} {Systems}}, journal = {Russian journal of nonlinear dynamics}, pages = {385--411}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2024_20_3_a4/} }
TY - JOUR AU - M. R. Koroleva AU - O. V. Mishchenkova AU - A. A. Chernova TI - Original Methods and Approaches to Numerical Simulation of Physical Processes in Fast-Response Technical Systems JO - Russian journal of nonlinear dynamics PY - 2024 SP - 385 EP - 411 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2024_20_3_a4/ LA - en ID - ND_2024_20_3_a4 ER -
%0 Journal Article %A M. R. Koroleva %A O. V. Mishchenkova %A A. A. Chernova %T Original Methods and Approaches to Numerical Simulation of Physical Processes in Fast-Response Technical Systems %J Russian journal of nonlinear dynamics %D 2024 %P 385-411 %V 20 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2024_20_3_a4/ %G en %F ND_2024_20_3_a4
M. R. Koroleva; O. V. Mishchenkova; A. A. Chernova. Original Methods and Approaches to Numerical Simulation of Physical Processes in Fast-Response Technical Systems. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 3, pp. 385-411. http://geodesic.mathdoc.fr/item/ND_2024_20_3_a4/
[1] Polandov, Yu. H. and Vlasenko, S. A., “Experimental Studies of the In-Boiler Process at Safety Valve Operation”, Izv. Vyssh. Uchebn. Zaved. Mashinostr., 1 (2007), 46–48 (Russian)
[2] Raeder, T., Tenenev, V. A., Koroleva, M. R., Mishenkova, O. V., and Voevodina, O. A., “Numerical Modeling of Safety Valve Gas Dynamics”, Intellekt. Sist. Proizv., 15:4 (2017), 4–11 (Russian) | DOI
[3] Kshumanev, S. V., Research and Provision of Dynamic Quality of Spring Safety Valves of Pneumohydraulic Systems of Railway Transportation, PhD Thesis, OrelGTU, Orel, Russian Federation, 2005, 203 pp. (Russian)
[4] Koroleva, M. R., Mishenkova, O. V., Raeder, T., Tenenev, V. A., and Chernova, A. A., “Numerical Simulation of the Process of Activation of the Safety Valve”, Kompyuternye Issledovaniya i Modelirovanie, 10:4 (2018), 495–509 (Russian)
[5] Chernoshtan, V. I. and Blagov, E. Ye., “Gas-Dynamic Calculation of the Safety Relief Valve and Outlet Labor Pipe: 2”, Armaturostroyeniye, 2011, no. 3(72), 61–65 (Russian)
[6] Song, X., Cui, L., Cao, M., Cao, W., Park, Y., and Dempster, W. M., “A CFD Analysis of the Dynamics of a Direct-Oprated Safety Relief Valve Mounted on a Pressure Vessel”, Energy Conv. Manag., 81 (2014), 407–419 | DOI
[7] Raeder, T., Tenenev, V., Chernova, A., and Koroleva, M., “Multilevel Simulation of Direct Operated Safety Valve”, Proc. of the Ivannikov Open Conf. (ISPRAS, Moscow, Russian Federation, Nov 2018), 109–115
[8] Licskó, G., Champneys, A., and Hős, C., “Dynamical Analysis of a Hydraulic Pressure Relief Valve”, Proc. of the World Congr. on Engineering (WCE, Jul 2009, London, UK), Vol. 2, 7 pp.
[9] Tenenev, V. A., Chernova, A. A., and Koroleva, M. R., “Application of the Riemann Problem with Complex Equations of State for Modeling Three-Dimensional Flows of Real Media”, J. Phys. Conf. Ser., 2119:1 (2021), Art. 012055, 6 pp. | DOI | MR
[10] Babilonia, M. J., Abrantes, J. K., and Azevedo, L., “Experimental Study of the Response of a Pressure Relief Valve for Slow and Fast Blockage Events”, Proc. of the 23rd ABCM Internat. Congr. of Mechanical Engineering (Rio de Janeiro, RJ, Brazil, Dec 2015)
[11] Tenenev, V. A. and Koroleva, M. R., “Modeling of the Gas Dynamic Processes with Different Equations of State”, Intellekt. Sist. Proizv., 21:3 (2023), 115–123 (Russian) | DOI
[12] Domagała, M., “Modelling of Direct Acting Relief Valve Using CFD-FSI Simulation”, Techn. Trans. Mechanics, 2015, no. 2-M(7), 43–48
[13] Hős, C. J., Champneys, A. R., Paulc, K., and McNeely, M., “Dynamic Behavior of Direct Spring Loaded Pressure Relief Valves in Gas Service: Model Development, Measurements and Instability Mechanisms”, J. Loss Prev. Process Ind., 31 (2014), 70–81 | DOI
[14] Beune, A., Analysis of High-Pressure Safety Valves, PhD Thesis, Technische Universiteit Eindhoven, Eindhoven, 2009, 135 pp.
[15] Budziszewski, A. and Thoren, L., CFD Simulation of a Safety Relief Valve for Improvement of a One-Dimensional Valve Model in RELAP5, Master's Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2012, 82 pp.
[16] Song, X. G., Wang, L., and Park, Y. C., “Transient Analysis of a Spring-Loaded Pressure Safety Valve Using Computational Fluid Dynamics (CFD)”, J. Pressure Vessel Technol., 132:5 (2010), Art. 054501, 5 pp. | DOI
[17] Couzinet, A., Ferrari, J., Gros, L., Vallet, Ch., and Pierrat, D., “Experimental Study and Numerical Modeling of Incompressible Flows in Safety Relief Valves”, Proc. of the 7th International Exergy, Energy and Environment Symposium (Valenciennes, France, Apr 2015), 11 pp. | Zbl
[18] Sohn, S., “A Numerical Analysis of Direct Spring Loaded Type Steam Safety Valve Using CFD Simulation”, Proc. of the 22nd Internat. Conf. Nuclear Energy for New Europe (Institut Jožef Stefan, Bled, Slovenia, Sep 2013), Art. 222, 7 pp.
[19] Yohance, H., Improved Internal Relief Valve Performance through Study of Reduced Cracking to Full By-Pass Pressure Using CFD Simulation, Master's Thesis, University of Windsor, Windsor, ON, Canada, 2015, 112 pp.
[20] Dalla Vedova, M. D. L., Maggiore, P., and Riva, G., “A New CFD-Simulink Based Systems Engineering Approach Applied to the Modelling of a Hydraulic Safety Relief Valve”, Int. J. Mech., 11 (2017), 43–50
[21] Raeder, T., Tenenev, V. A., and Paklina, N. V., “Numerical 3D Simulation of Safety Valve Gas Dynamics”, Vestn. IzhGTU, 21:4 (2018), 174–181 (Russian)
[22] Raeder, T., Tenenev, V. A., and Paklina, N. V., “Study of the Influence of the Initial Clearance Value on the Dynamics of Opening the Safety Valve”, Intellekt. Sist. Proizv., 16:2 (2018), 28–40 (Russian) | DOI
[23] Raeder, T., Tenenev, V. A., and Koroleva, M. R., “Numerical Simulation of the Working Process in a Safety Valve with Additional Gas-Dynamic Coupling”, Intellekt. Sist. Proizv., 18:3 (2020), 118–126 (Russian) | DOI
[24] Raeder, T., Tenenev, V. A., Koroleva, M. R., and Mishchenkova, O. V., “Nonlinear Processes in Safety Systems for Substances with Parameters Close to a Critical State”, Russian J. Nonlinear Dyn., 17:1 (2021), 119–138 | MR
[25] Raeder, T., Tenenev, V. A., and Chernova, A. A., “Determination of Flow Characteristics in Technological Processes with Controlled Pressure”, Pribory i Metody Izmeren., 11:3 (2020), 204–211 | DOI
[26] Raeder, T., Tenenev, V. A., and Chernova, A. A., “Numerical Simulation of Unstable Operating Modes of a Safety Valve”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2020, no. 68, 141–157 (Russian) | MR
[27] Raeder, T., Tenenev, V. A., and Chernova, A. A., “Incorporation of Fluid Compressibility into the Calculation of the Stationary Mode of Operation of a Hydraulic Device at High Fluid Pressures”, Russian J. Nonlinear Dyn., 17:2 (2021), 195–209 | MR | Zbl
[28] Tenenev, V. A. and Koroleva, M. R., “Numerical Modeling of the Real van der Waals Gas Flow in the Shock Tube”, Intellekt. Sist. Proizv., 19:2 (2021), 96–103 (Russian) | DOI | MR
[29] Charny, I. A., “On Hydraulic Shock of Viscous Fluid in a Pipeline”, Tr. Mosk. Neft. Inst. im. I. M. Gubkina, 1940, no. 2 (Russian)
[30] GOST 31294-2005: Direct-Acting Safety Valves. General Technical Conditions, Stadartinform, Moscow, 2008, 31 pp. (Russian)
[31] Ismagilova, D. F., Ismagilova, R. F., and Celishev, V. A., “Mathematical Modelling of Water Hammer Protection System”, Vestn. UGATU, 18:4(65) (2014), 72–78 (Russian)
[32] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, 3rd ed., Springer, Berlin, 2009, xxiv, 724 pp. | MR | Zbl
[33] Kochetkov, A. V. and Fedotov, P. V., “Equations of State of a Gas and a Model of an Ideal Gas”, Naukovedenie, 9:3 (2017), 6 pp. (Russian)
[34] Span, R., Multiparameter Equation of State: An Accurate Source of Thermodynamic Property Data, Springer, Berlin, 2000, xviii, 367 pp.
[35] Paricaud, P., Galindo, A., and Jackson, G., “Recent Advances in the Use of the SAFT Approach in Describing Electrolytes, Interfaces, Liquid Crystals and Polymers”, Fluid Ph. Equilib., 194–197 (2002), 87–96 | DOI
[36] Betancourt-Cárdenas, F. F., Galicia-Luna, L. A., and Sandler, S. I., “Equation of State for the Lennard – Jones Fluid Based on the Perturbation Theory”, Fluid Ph. Equilib., 264:1–2 (2008), 174–183 | DOI
[37] Peng, D. and Robinson, D., “A New Two-Constant Equation of State”, Ind. Eng. Chem. Fundamentals, 15:1 (1976), 59–64 | DOI | MR | Zbl
[38] Demirel, Y. and Gerbaud, V., Nonequilibrium Thermodynamics: Transport and Rate Processes in Physical, Chemical and Biological Systems, 4th ed., Elsevier, Amsterdam, 2018, 880 pp.
[39] Maxwell, J. C., “Van der Waals on the Continuity of the Gaseous and Liquid States”, The Scientific Papers of James Clerk Maxwell, Vol. 2, Camb. Libr. Collect. Phys. Sci., ed. W. D. Niven, Cambridge Univ. Press, Cambridge, 2011, 407–415 | MR
[40] Soave, G., “20 Years of Redlich – Kwong Equation of State”, Fluid Ph. Equilib., 82 (1993), 345–359 | DOI
[41] Akberov, R. R., “Calculating the Vapor-Liquid Phase Equilibrium for Multicomponent Systems Using the Soave – Redlich – Kwong Equation”, Theor. Found. Chem. Eng., 45:3 (2011), 312–318 | DOI
[42] Benedict, M., Webb, G. B., and Rubin, L. C., “An Empirical Equation for Thermodynamic Properties of Light Hydrocarbons and Their Mixtures: 1. Methane, Ethane, Propane and $n$-Butane”, J. Chem. Phys., 8:4 (1940), 334–345 | DOI
[43] Zohuri, B., “Properties of Pure Substances”, Physics of Cryogenics: An Ultralow Temperature Phenomenon, Elsevier, Amsterdam, 2018, 53–79
[44] Godunov, S. K., “A Difference Method for Numerical Calculation of Discontinuous Solutions of the Equations of Hydrodynamics”, Mat. Sb. (N.S.), 47(89):3 (1959), 271–306 (Russian) | MR | Zbl
[45] Godunov, S. K., Zabrodin, A. V., Ivanov, M. Ya., Kraiko, A. N., and Prokopov, G. P., Numerical Solution of Multidimensional Gas Dynamics Problems, Nauka, Moscow, 1976, 400 pp. (Russian) | MR