Numerical Studies of the Influence of the Nature of the In-Chamber Flow on the Initial Period of Operation of the Gas Generator
Russian journal of nonlinear dynamics, Tome 20 (2024) no. 3, pp. 371-384.

Voir la notice de l'article provenant de la source Math-Net.Ru

The ignition of a fuel pellet in a gas generator chamber is a time-consuming complex physico- chemical process. During the ignition of the checker, the operating conditions of the device differ significantly from the conditions of its operation in the main area of operation. In particular, an important characteristic of the initial stage is the pattern of flame propagation over the surface of the fuel. A computational algorithm for modeling unsteady turbulent flows of compressible viscous gas based on numerical integration of unsteady equations obtained using physical con- servation laws was used to study the vortex flow of gas in the gas generator path and the ignition process of the fuel block. The method used a system of equations written in a cylindrical coor- dinate system. The computational algorithm is based on a modified flow vector splitting scheme (Steger – Warming scheme). The algorithm has the 2nd order of accuracy in space. The obtained results of numerical simulation of the gas flow in the gas generator allow us to investigate the patterns of development of the ignition process of the fuel block in time, depending on the nature of the gas flow in the combustion chamber.
Keywords: vortex flow, large eddy simulation, computational fluid dynamics
Mots-clés : turbulence
@article{ND_2024_20_3_a3,
     author = {A. M. Lipanov and A. A. Shumikhin and A. I. Karpov},
     title = {Numerical {Studies} of the {Influence} of the {Nature} of the {In-Chamber} {Flow} on the {Initial} {Period} of {Operation} of the {Gas} {Generator}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {371--384},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2024_20_3_a3/}
}
TY  - JOUR
AU  - A. M. Lipanov
AU  - A. A. Shumikhin
AU  - A. I. Karpov
TI  - Numerical Studies of the Influence of the Nature of the In-Chamber Flow on the Initial Period of Operation of the Gas Generator
JO  - Russian journal of nonlinear dynamics
PY  - 2024
SP  - 371
EP  - 384
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2024_20_3_a3/
LA  - en
ID  - ND_2024_20_3_a3
ER  - 
%0 Journal Article
%A A. M. Lipanov
%A A. A. Shumikhin
%A A. I. Karpov
%T Numerical Studies of the Influence of the Nature of the In-Chamber Flow on the Initial Period of Operation of the Gas Generator
%J Russian journal of nonlinear dynamics
%D 2024
%P 371-384
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2024_20_3_a3/
%G en
%F ND_2024_20_3_a3
A. M. Lipanov; A. A. Shumikhin; A. I. Karpov. Numerical Studies of the Influence of the Nature of the In-Chamber Flow on the Initial Period of Operation of the Gas Generator. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 3, pp. 371-384. http://geodesic.mathdoc.fr/item/ND_2024_20_3_a3/

[1] Izv. Ross. Akad. Nauk Mekh. Zhidk. Gaza, 57:1 (2022), 101–117 (Russian) | DOI | MR | Zbl

[2] Wang, Q., Jiang, Q., Hu, G., Chen, X., Li, Ch., and Xiao, Y., “Aerodynamic Characteristics of a Square Cylinder with Corner Fins”, Adv. Bridge Eng., 2 (2021), Art. 20, 20 pp. | DOI

[3] Zhong, W., Yim, S. C., and Deng, L., “Vortex Shedding Patterns past a Rectangular Cylinder near a Free Surface”, Ocean Eng., 200 (2020), Art. 107049, 18 pp. | DOI | MR

[4] Ullah, N., Shams-ul-Islam, and Zhou C. Y., “Low Reynolds Number Channelized Fluid Flow of Asymmetric Plane to a Non-Asymmetric Plane with a Sudden Expansion by Using Lattice Boltzmann Method”, AIP Adv., 10:1 (2020), Art. 015023, 15 pp. | DOI | MR

[5] Robichaux, J., Balachandar, S., and Vanka, S. P., “Three-Dimensional Floquet Instability of the Wake of Square Cylinder”, Phys. Fluids, 11:3 (1999), 560–578 | DOI | MR | Zbl

[6] Williamson, C. H. K., “Vortex Dynamics in the Cylinder Wake”, Annu. Rev. Fluid Mech., 28 (1996), 477–539 | DOI | MR

[7] Valger, S. A., Fedorov, A. V., and Fedorova, N. N., “Simulation of Incompressible Turbulent Flows in Vicinity of Bluff Bodies with ANSYS Fluent”, Vychisl. Tekhnolog., 18:5 (2013), 27–40 (Russian)

[8] Lipanov, A. M., Kisarov, Yu. F., and Klyuchnikov, I. G., “Numerical Simulation of Viscous Subsonic Flows for Reynolds Number $10^4$”, Matem. Model., 9:3 (1997), 3–12 (Russian) | MR | Zbl

[9] Danilkin, E. A., Nuterman, R. B., Bart, A. A., Degi, D. V., and Starchenko, A. V., “Study of Airflow and Pollutant Transport in an Urban Street Canyon Using Large Eddy Simulation of the Turbulent Flow”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2012, no. 4(20), 66–79 (Russian) | MR

[10] Godunov, S. K., Zabrodin, A. V., Ivanov, M. Ya., Kraiko, A. N., and Prokopov, G. P., Numerical Solution of Multidimensional Problems of Gas Dynamics, Nauka, Moscow, 1976, 400 pp. (Russian) | MR

[11] Tadmor, Z. and Gogos, C. G., Principles of Polymer Processing, 2nd ed., Wiley, New York, 1979, 992 pp.

[12] Lipanov, A. M., Shumikhin, A. A., Koroleva, M. R., and Karpov, A. I., “Numerical Simulation Intra-Chamber of Unsteady Turbulent Flows Stimulate: Part 2”, Vestn. YuUrGU. Ser. Mat. Model. Progr., 16:1 (2023), 35–46 (Russian) | MR

[13] Steger, J. L. and Warming, R. F., “Flux Vector Splitting of the Inviscid Gasdynamic Equations with Application to Finite-Difference Methods”, J. Comput. Phys., 40:2 (1981), 263–293 | DOI | MR | Zbl

[14] Anderson, W. K., Thomas, J. L., and Van Leer, B. A., “A Comparison of Finite Volume Flux Vector Splittings for the Euler Equations”, AIAA J., 24:9 (1986), 1453–1460 | DOI

[15] Pino Martín, M., Piomelli, U., and Candler, G., “Subgrid-Scale Models for Compressible Large-Eddy Simulations”, Theoret. Comput. Fluid Dynamics, 13:5 (2000), 361–376 | DOI | Zbl

[16] Prikl. Mekh. Tekhn. Fiz., 47:3 (2006), 31–42 (Russian) | DOI | MR | Zbl

[17] Moin, P., Squires, K., Cabot, W., and Lee, S., “A Dynamic Subgrid-Scale Model for Compressible Turbulence and Scalar Transport”, Phys. Fluids, 3:11 (1991), 2746–2757 | DOI | Zbl