Direct Numerical Simulation of Supersonic Gas Flow Through a Circular Cylindrical Channel
Russian journal of nonlinear dynamics, Tome 20 (2024) no. 3, pp. 361-369.

Voir la notice de l'article provenant de la source Math-Net.Ru

The results of the theoretical solution of the problem of braking a supersonic flow in a round pipe based on direct numerical simulation by integrating the Navier – Stokes equations without the use of additional models and empirical constants are shown. Shaded maps of density distribu- tion depending on flow parameters are presented. The flow consists of successive rhombus-shaped shock waves distributed along the entire length of the channel. It is determined that the size of x-shaped structures depends on the flow parameters. At a lower Mach number, the rhombuses have a smaller size and, accordingly, their number increases along the length of the channel. The Reynolds number also affects the size of structures, however, it is less pronounced. With a lower Reynolds number, x-shaped structures have a smaller size. It is shown that over time the flow tends to a stationary state.
Keywords: direct numerical simulation, Navier – Stokes equations, supersonic flows, high-order approximation, Reynolds number, Mach number
@article{ND_2024_20_3_a2,
     author = {A. M. Lipanov and S. A. Karskanov},
     title = {Direct {Numerical} {Simulation} of {Supersonic} {Gas} {Flow} {Through} a {Circular} {Cylindrical} {Channel}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {361--369},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2024_20_3_a2/}
}
TY  - JOUR
AU  - A. M. Lipanov
AU  - S. A. Karskanov
TI  - Direct Numerical Simulation of Supersonic Gas Flow Through a Circular Cylindrical Channel
JO  - Russian journal of nonlinear dynamics
PY  - 2024
SP  - 361
EP  - 369
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2024_20_3_a2/
LA  - en
ID  - ND_2024_20_3_a2
ER  - 
%0 Journal Article
%A A. M. Lipanov
%A S. A. Karskanov
%T Direct Numerical Simulation of Supersonic Gas Flow Through a Circular Cylindrical Channel
%J Russian journal of nonlinear dynamics
%D 2024
%P 361-369
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2024_20_3_a2/
%G en
%F ND_2024_20_3_a2
A. M. Lipanov; S. A. Karskanov. Direct Numerical Simulation of Supersonic Gas Flow Through a Circular Cylindrical Channel. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 3, pp. 361-369. http://geodesic.mathdoc.fr/item/ND_2024_20_3_a2/

[1] Le, D. B., Goyne, C. P., Krauss, R. H., and McDaniel, J. C., “Experimental Study of a Dual-Mode Scramjet Isolator”, J. Propul. Power, 24:5 (2008), 1050–1057 | DOI

[2] Sun, M., Zhang, S., Zhao, Y., Zhao, Y., and Liang, J., “Experimental Investigation on Transverse Jet Penetration into a Supersonic Turbulent Crossflow”, Sci. China Technol. Sci., 56 (2013), 1989–1998 | DOI

[3] Hohn, O. M. and Gülhan, A., “Experimental Investigation of Sidewall Compressionand Internal Contraction in a Scramjet Inlet”, J. Propul. Power, 33:2 (2017), 501–513 | DOI

[4] Chen, H., Sun, M.-B., Dapeng, X., Yang, Y., Wang, T., and Wang, H., “Large Eddy Simulation of Supersonic Flow in Ducts with Complex Cross-Sections”, Theor. Appl. Mech. Lett., 13:6 (2023), Art. 100469, 9 pp. | DOI

[5] Hadjadj, A., Perrot, Y., and Verma, S., “Numerical Study of Shock/Boundary Layer Interaction in Supersonic Overexpanded Nozzles”, Aerosp. Sci. Technol., 42 (2015), 158–168 | DOI

[6] De Maio, M., Latini, B., Nasuti, F., and Pirozzoli, S., “Direct Numerical Simulation of Turbulent Flow in Pipes with Realistic Large Roughness at the Wall”, J. Fluid Mech., 974 (2023), A40, 25 pp. | DOI | MR

[7] Modesti, D. and Pirozzoli, S., “Direct Numerical Simulation of Supersonic Pipe Flow at Moderate Reynolds Number”, Int. J. Heat Fluid Flow, 76 (2019), 100–112 | DOI

[8] Ghosh, S., Direct and Large-Eddy Simulation of Supersonic Turbulent Flow in Pipes, Nozzles and Diffusers, PhD Thesis, Technische Universität München, München, Germany, 2008, 166 pp.

[9] Dou, H.-S., Tsai, H. M., Khoo, B. C., and Qiu, J., “Simulations of Detonation Wave Propagation in Rectangular Ducts Using a Three-Dimensional WENO Scheme”, Combust. Flame, 154:4 (2008), 644–659 | DOI | MR

[10] Wang, Zh., Zhu, J., Yang, Y., and Zhao, N., “A New Fifth-Order Alternative Finite Difference Multi-Resolution WENO Scheme for Solving Compressible Flow”, Comput. Methods Appl. Mech. Engrg., 382 (2021), Paper No. 113853, 28 pp. | MR

[11] Lipanov, A. M., Theoretical Fluid Mechanics of Newtonian Media, Nauka, Moscow, 2011, 552 pp. (Russian)

[12] Lipanov, A. M. and Karskanov, S. A., “Direct Numerical Simulation of Aerodynamic Flows Based on Integration of the Navier – Stokes Equations”, Russian J. Nonlinear Dyn., 18:3 (2022), 349–365 | MR

[13] Jiang, G.-S. and Shu, C.-W., “Efficient Implementation of Weighted ENO Schemes”, J. Comput. Phys., 126:1 (1996), 202–228 | DOI | MR | Zbl

[14] Gottlieb, S. and Shu, C.-W., “Total Variation Diminishing Runge – Kutta Schemes”, Math. Comp., 67:221 (1998), 73–85 | DOI | MR | Zbl

[15] Fundamentals of Gas Dynamics, Princeton Legacy Library, ed. M. Emmons, Princeton Univ. Press, Princeton, N.J., 1958, 783 pp.