Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2024_20_3_a2, author = {A. M. Lipanov and S. A. Karskanov}, title = {Direct {Numerical} {Simulation} of {Supersonic} {Gas} {Flow} {Through} a {Circular} {Cylindrical} {Channel}}, journal = {Russian journal of nonlinear dynamics}, pages = {361--369}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2024_20_3_a2/} }
TY - JOUR AU - A. M. Lipanov AU - S. A. Karskanov TI - Direct Numerical Simulation of Supersonic Gas Flow Through a Circular Cylindrical Channel JO - Russian journal of nonlinear dynamics PY - 2024 SP - 361 EP - 369 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2024_20_3_a2/ LA - en ID - ND_2024_20_3_a2 ER -
%0 Journal Article %A A. M. Lipanov %A S. A. Karskanov %T Direct Numerical Simulation of Supersonic Gas Flow Through a Circular Cylindrical Channel %J Russian journal of nonlinear dynamics %D 2024 %P 361-369 %V 20 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2024_20_3_a2/ %G en %F ND_2024_20_3_a2
A. M. Lipanov; S. A. Karskanov. Direct Numerical Simulation of Supersonic Gas Flow Through a Circular Cylindrical Channel. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 3, pp. 361-369. http://geodesic.mathdoc.fr/item/ND_2024_20_3_a2/
[1] Le, D. B., Goyne, C. P., Krauss, R. H., and McDaniel, J. C., “Experimental Study of a Dual-Mode Scramjet Isolator”, J. Propul. Power, 24:5 (2008), 1050–1057 | DOI
[2] Sun, M., Zhang, S., Zhao, Y., Zhao, Y., and Liang, J., “Experimental Investigation on Transverse Jet Penetration into a Supersonic Turbulent Crossflow”, Sci. China Technol. Sci., 56 (2013), 1989–1998 | DOI
[3] Hohn, O. M. and Gülhan, A., “Experimental Investigation of Sidewall Compressionand Internal Contraction in a Scramjet Inlet”, J. Propul. Power, 33:2 (2017), 501–513 | DOI
[4] Chen, H., Sun, M.-B., Dapeng, X., Yang, Y., Wang, T., and Wang, H., “Large Eddy Simulation of Supersonic Flow in Ducts with Complex Cross-Sections”, Theor. Appl. Mech. Lett., 13:6 (2023), Art. 100469, 9 pp. | DOI
[5] Hadjadj, A., Perrot, Y., and Verma, S., “Numerical Study of Shock/Boundary Layer Interaction in Supersonic Overexpanded Nozzles”, Aerosp. Sci. Technol., 42 (2015), 158–168 | DOI
[6] De Maio, M., Latini, B., Nasuti, F., and Pirozzoli, S., “Direct Numerical Simulation of Turbulent Flow in Pipes with Realistic Large Roughness at the Wall”, J. Fluid Mech., 974 (2023), A40, 25 pp. | DOI | MR
[7] Modesti, D. and Pirozzoli, S., “Direct Numerical Simulation of Supersonic Pipe Flow at Moderate Reynolds Number”, Int. J. Heat Fluid Flow, 76 (2019), 100–112 | DOI
[8] Ghosh, S., Direct and Large-Eddy Simulation of Supersonic Turbulent Flow in Pipes, Nozzles and Diffusers, PhD Thesis, Technische Universität München, München, Germany, 2008, 166 pp.
[9] Dou, H.-S., Tsai, H. M., Khoo, B. C., and Qiu, J., “Simulations of Detonation Wave Propagation in Rectangular Ducts Using a Three-Dimensional WENO Scheme”, Combust. Flame, 154:4 (2008), 644–659 | DOI | MR
[10] Wang, Zh., Zhu, J., Yang, Y., and Zhao, N., “A New Fifth-Order Alternative Finite Difference Multi-Resolution WENO Scheme for Solving Compressible Flow”, Comput. Methods Appl. Mech. Engrg., 382 (2021), Paper No. 113853, 28 pp. | MR
[11] Lipanov, A. M., Theoretical Fluid Mechanics of Newtonian Media, Nauka, Moscow, 2011, 552 pp. (Russian)
[12] Lipanov, A. M. and Karskanov, S. A., “Direct Numerical Simulation of Aerodynamic Flows Based on Integration of the Navier – Stokes Equations”, Russian J. Nonlinear Dyn., 18:3 (2022), 349–365 | MR
[13] Jiang, G.-S. and Shu, C.-W., “Efficient Implementation of Weighted ENO Schemes”, J. Comput. Phys., 126:1 (1996), 202–228 | DOI | MR | Zbl
[14] Gottlieb, S. and Shu, C.-W., “Total Variation Diminishing Runge – Kutta Schemes”, Math. Comp., 67:221 (1998), 73–85 | DOI | MR | Zbl
[15] Fundamentals of Gas Dynamics, Princeton Legacy Library, ed. M. Emmons, Princeton Univ. Press, Princeton, N.J., 1958, 783 pp.