Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2024_20_2_a4, author = {A. I. Gudimenko and A. V. Lihosherstov}, title = {On the {Phenomenon} of {Low-Frequency,} {Large-Amplitude} {Oscillations} in a {High-Dimensional} {Linear} {Dynamical} {System}}, journal = {Russian journal of nonlinear dynamics}, pages = {259--276}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2024_20_2_a4/} }
TY - JOUR AU - A. I. Gudimenko AU - A. V. Lihosherstov TI - On the Phenomenon of Low-Frequency, Large-Amplitude Oscillations in a High-Dimensional Linear Dynamical System JO - Russian journal of nonlinear dynamics PY - 2024 SP - 259 EP - 276 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2024_20_2_a4/ LA - en ID - ND_2024_20_2_a4 ER -
%0 Journal Article %A A. I. Gudimenko %A A. V. Lihosherstov %T On the Phenomenon of Low-Frequency, Large-Amplitude Oscillations in a High-Dimensional Linear Dynamical System %J Russian journal of nonlinear dynamics %D 2024 %P 259-276 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2024_20_2_a4/ %G en %F ND_2024_20_2_a4
A. I. Gudimenko; A. V. Lihosherstov. On the Phenomenon of Low-Frequency, Large-Amplitude Oscillations in a High-Dimensional Linear Dynamical System. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 2, pp. 259-276. http://geodesic.mathdoc.fr/item/ND_2024_20_2_a4/
[1] Müller, P. C. and Schiehlen, W. O., Linear Vibrations: A Theoretical Treatment of Multi-Degree-of-Freedom Vibrating Systems, translated from the German by S. Swierczkowski, Monographs and Textbooks on Mechanics of Solids and Fluids: Mechanics. Dynamical Systems, 7, Martinus Nijhoff Publ., The Hague, 1985, x, 327 pp. | MR | Zbl
[2] Gatti, P. L., Applied Structural and Mechanical Vibrations: Theory and Methods, 2nd ed., CRC, London, 2014, 668 pp.
[3] Pikovsky, A., Rosenblum, M., and Kurths, J., Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge Nonlinear Sci. Ser., 12, Cambridge Univ. Press, New York, 2001, 432 pp. | MR | Zbl
[4] Andronov, A. A., Vitt, A. A., and Khaikin, S. E., Theory of Oscillators, Pergamon, Oxford, 1966, 848 pp. | MR | Zbl
[5] Jenkins, A., “Self-Oscillation”, Phys. Rep., 525:2 (2013), 167–222 | DOI | MR | Zbl
[6] Monkewitz, P. A., Bechert, D. W., Barsikow, B., and Lehmann, B., “Self-Excited Oscillations and Mixing in a Heated Round Jet”, J. Fluid Mech., 213:1 (1990), 611–639 | DOI
[7] Zheng, Z. and Qian, Y., “Dominant Phase-Advanced Driving Analysis of Self-Sustained Oscillations in Biological Networks”, Chin. Phys. B, 27:1 (2018), 018901, 10 pp. | DOI | MR
[8] Li, M. and Bao, J., “Effect of Self-Oscillation on Escape Dynamics of Classical and Quantum Open Systems”, Entropy, 22:8 (2020), Paper No. 839, 10 pp. | MR
[9] Arnaut, L. G. and Ibánez, S., “Self-Sustained Oscillations and Global Climate Changes”, Sci. Rep., 10:1 (2020), Art. 11200, 19 pp. | DOI
[10] Zhang, H. and Detournay, E., “An Alternative Formulation for Modeling Self-Excited Oscillations of Rotary Drilling Systems”, J. Sound Vibration, 474 (2020), Art. 115241, 22 pp. | DOI | MR
[11] Zhai, C. and Sun, W., “Analytical Approximation of a Self-Oscillatory Reaction System Using the Laplace – Borel Transform”, Chaos Solitons Fractals, 142 (2021), Paper No. 110508, 12 pp. | DOI | MR
[12] Balmashnov, A. A., Kalashnikov, A. V., Kalashnikov, V. V., Stepina, S. P., and Umnov, A. M., “Self-Excitation of Low-Frequency Oscillations in the Plasma Ring Formed by an ECR Discharge in a Narrow Coaxial Cavity”, Plasma Phys. Rep., 44:6 (2018), 626–629 | DOI
[13] Chicone, C., Ordinary Differential Equations with Applications, Texts Appl. Math., 34, 2nd ed., Springer, New York, 2006, xx, 636 pp. | MR | Zbl
[14] Teschl, G., Ordinary Differential Equations and Dynamical Systems, Grad. Stud. Math., 140, AMS, Providence, R.I., 2011, 356 pp. | MR
[15] Schrödinger, E., “Zur Dynamik elastisch gekoppelter Punktsysteme”, Ann. Phys., 44 (1914), 916–934 | DOI
[16] Takizawa, É. I. and Kobayasi, K., “Heat Flow in a System of Coupled Harmonic Oscillators”, Chinese J. Phys., 1:2 (1963), 59–73
[17] Kobayasi, K. and Takizawa, É. I., “Effect of a Light Isotopic Impurity on the Energy Flow in a System of One-Dimensional Coupled Harmonic Oscillators”, Chinese J. Phys., 2:2 (1964), 68–79
[18] Olson, H. F., Dynamical Analogies, D. Van Nostrand, New York, 1943, 208 pp.
[19] Nilsson, J. W. and Riedel, S. A., Electric Circuits, 12th ed., Pearson, New York, 2023, 817 pp.
[20] Groszkowski, J., Frequency of Self-Oscillation, Pergamon, Oxford, 2013, 542 pp.
[21] Pozar, D. M., Microwave Engineering, Wiley, New York, 2011, 752 pp.
[22] Ulaby, F. T. and Ravaioli, U., Fundamentals of Applied Electromagnetics, Pearson, New York, 2023, 496 pp.
[23] Irwin, J. D. and Nelms, R. M., Basic Engineering Circuit Analysis, 12th ed., Wiley, New York, 2020, 768 pp.
[24] Lee, J. M., Manifolds and Differential Geometry, Grad. Stud. in Math., 107, AMS, Providence, R.I., 2009, xiv, 671 pp. | DOI | MR | Zbl
[25] Gantmacher, F. R., The Theory of Matrices: Vol. 1, Chelsea, New York, 1998, x, 374 pp. | MR | Zbl
[26] Gantmacher, F. P. and Krein, M. G., Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems, rev. ed., translation based on the 1941 Russian original, edited and with a preface by Alex Eremenko, AMS, Providence, R.I., 2002, viii, 310 pp. | MR | Zbl
[27] Atkinson, F. V., Discrete and Continuous Boundary Problems, Math. Sci. Eng., 8, Acad. Press, New York, 1964, xiv, 570 pp. | MR | Zbl
[28] Guseinov, G. Sh., “On an Inverse Problem for Two Spectra of Finite Jacobi Matrices”, Appl. Math. Comput., 218:14 (2012), 7573–7589 | MR | Zbl
[29] Akhiezer, N. I., The Classical Moment Problem and Some Related Questions in Analysis, Oliver Boyd, Edinburgh, 1965, 253 pp. | MR | Zbl
[30] Elaydi, S., An Introduction to Difference Equations, Springer, New York, 2005, xxii, 540 pp. | MR | Zbl