Mass Sensing by Symmetry Breaking and Mode
Russian journal of nonlinear dynamics, Tome 20 (2024) no. 2, pp. 231-257.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, we study the nonlinear dynamics of a mode-localized mass detector. A system of equations is obtained for two weakly coupled beam resonators with an alternating electric current flowing through them and taking into account the point mass on one of the resonators. The one-dimensional problem of thermal conductivity is solved, and a steady-state harmonic temperature distribution in the volume of the resonators is obtained. Using the method of multiple scales, a system of equations in slow variables is obtained, on the basis of which instability zones of parametric resonance, amplitude-frequency characteristics, as well as zones of attraction of various branches, are found. It is shown that in a completely symmetrical system (without a deposited particle), the effect of branching of the antiphase branch of the frequency response is observed, which leads to the existence of an oscillation regime with different amplitudes in a certain frequency range. In the presence of a deposited particle, this effect is enhanced, and the branching point and the ratio of the amplitudes of oscillations of the resonators depend on the mass of the deposited particle.
Keywords: nano- and microsystems, nano- and microelectromechanical systems (NEMS/MEMS), sensors of masses of deposited particles, gas detectors, gas concentration sensors, nonlinear dynamics, coupled-field problems, modal localization, weakly coupled systems
@article{ND_2024_20_2_a3,
     author = {N. V. Piskun and A. V. Lukin and I. A. Popov and L. V. Shtukin},
     title = {Mass {Sensing} by {Symmetry} {Breaking} and {Mode}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {231--257},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2024_20_2_a3/}
}
TY  - JOUR
AU  - N. V. Piskun
AU  - A. V. Lukin
AU  - I. A. Popov
AU  - L. V. Shtukin
TI  - Mass Sensing by Symmetry Breaking and Mode
JO  - Russian journal of nonlinear dynamics
PY  - 2024
SP  - 231
EP  - 257
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2024_20_2_a3/
LA  - en
ID  - ND_2024_20_2_a3
ER  - 
%0 Journal Article
%A N. V. Piskun
%A A. V. Lukin
%A I. A. Popov
%A L. V. Shtukin
%T Mass Sensing by Symmetry Breaking and Mode
%J Russian journal of nonlinear dynamics
%D 2024
%P 231-257
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2024_20_2_a3/
%G en
%F ND_2024_20_2_a3
N. V. Piskun; A. V. Lukin; I. A. Popov; L. V. Shtukin. Mass Sensing by Symmetry Breaking and Mode. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 2, pp. 231-257. http://geodesic.mathdoc.fr/item/ND_2024_20_2_a3/

[1] Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 2023, no. 3, 135–151 (Russian) | DOI | Zbl

[2] Indeitsev, D. A., Belyaev, Ya. V., Lukin, A. V., Popov, I. A., Igumnova, V. S., and Mozhgova, N. V., “Analysis of Imperfections Sensitivity and Vibration Immunity of MEMS Vibrating Wheel Gyroscope”, Nonlinear Dyn., 105:2 (2021), 1273–1296 | DOI

[3] Wang, H., Zou, D., Peng, P., Yao, G., and Ren, J., “A Novel High-Sensitivity MEMS Pressure Sensor for Rock Mass Stress Sensing”, Sensors, 22:19 (2022), Art. 7593, 15 pp.

[4] Valenzuela, V. M., Teran, D., Sandoval, A., Gomez, E., Franco-Villafañe, J. A., Alcantar-Peña, J. J., and Ponce-Hernandez, J., “Three Robust Temperature-Drift Compensation Strategies for a MEMS Gravimeter”, J. Appl. Phys., 133:23 (2023), Art. 234501, 13 pp. | DOI

[5] Wang, Y.-H., Chen, Ch.-P., Chang, Ch.-M., Lin, Ch.-P., Lin, Ch.-H., Fu, L.-M., and Lee, Ch.-Y., “MEMS-Based Gas Flow Sensors”, Microfluid. Nanofluid., 6:3 (2009), 333–346 | DOI

[6] Nathani, M. U., Nazemi, H., Love, C., Babu Lopez, Y., Swaminathan, S., and Emadi, A., “Capacitive Based Micromachined Resonators for Low Level Mass Detection”, Micromachines (Basel), 12:1 (2021), Art. 13, 25 pp.

[7] Yaqoob, U. and Younis, M. I., “Chemical Gas Sensors: Recent Developments, Challenges, and the Potential of Machine Learning: A Review”, Sensors, 21:8 (2021), Art. 2877, 40 pp. | DOI

[8] Chircov, C. and Grumezescu, A. M., “Microelectromechanical Systems (MEMS) for Biomedical Applications”, Micromachines (Basel), 13:2 (2022), Art. 164, 31 pp.

[9] Ganesan, A. V., “A Novel MEMS Based Immunosensor for Ebola Virus Detection”, Proc. of the ASME Internat. Mechanical Engineering Congress and Exposition, Vol. 7B. Fluids Engineering Systems and Technologies (San Diego, Calif., USA, Nov 2013), V07BT08A074, 5 pp.

[10] Ghommem, M., Puzyrev, V., Sabouni, R., and Najar, F., “Deep Learning for Gas Sensing Using MOFs Coated Weakly-Coupled Microbeams”, Appl. Math. Model., 105 (2022), 711–728 | DOI | MR | Zbl

[11] Yaqoob, U., Lenz, W. B., Alcheikh, N., Jaber, N., and Younis, M. I., “Highly Selective Multiple Gases Detection Using a Thermal-Conductivity-Based MEMS Resonator and Machine Learning”, IEEE Sens. J., 22:20 (2022), 19858–19866 | DOI

[12] Bouchaala, A., Nayfeh, A. H., Jaber, N., and Younis, M. I., “Mass and Position Determination in MEMS Mass Sensors: A Theoretical and an Experimental Investigation”, J. Micromech. Microeng., 26:10 (2016), Art. 105009, 10 pp. | DOI

[13] Bertke, M., Hamdana, G., Wu, W., Wasisto, H. S., Uhde, E., and Peiner, E., “Analysis of Asymmetric Resonance Response of Thermally Excited Silicon Microcantilevers for Mass-Sensitive Nanoparticle Detection”, J. Micromech. Microeng., 27:6 (2017), Art. 064001 | DOI

[14] Xia, C., Wang, D. F., Ono, T., Itoh, T., and Maeda, R., “A Mass Multi-Warning Scheme Based on One-to-Three Internal Resonance”, Mech. Syst. Signal Process., 142 (2020), Art. 106784, 14 pp. | DOI

[15] Li, N., Xia, C., Zheng, G., Du, X., and Wang, D. F., “Internal Resonant Oscillation in Coupled Resonators for High-Resolution Mass Sensing with a Wider Coupling Range”, Proc. of the 16th Annu. IEEE Internat. Conf. on Nano/Micro Engineered and Molecular Systems (NEMS, Xiamen, China, Apr 2021), 1074–1079

[16] Schmid, S., Dohn, S., and Boisen, A., “Real-Time Particle Mass Spectrometry Based on Resonant Microstrings”, Sensors, 10:9 (2010), 8092–8100 | DOI

[17] Park, K., Kim, N., Morisette, D. T., Aluru, N. R., and Bashir, R., “Resonant MEMS Mass Sensors for Measurement of Microdroplet Evaporation”, J. Microelectromech. Syst., 21:3 (2012), 702–711 | DOI

[18] Bouchaala, A., Nayfeh, A. H., and Younis, M. I., “Frequency Shifts of Micro and Nano Cantilever Beam Resonators due to Added Masses”, J. Dyn. Syst. Meas. Control, 138:9 (2016), Art. 091002, 9 pp. | DOI

[19] Bouchaala, A., Nayfeh, A. H., and Younis, M. I., “Analytical Study of the Frequency Shifts of Micro and Nano Clamped-Clamped Beam Resonators due to an Added Mass”, Meccanica, 52:1–2 (2017), 333–348 | DOI | Zbl

[20] Mouro, J., Tiribilli, B., and Paoletti, P., “A Versatile Mass-Sensing Platform With Tunable Nonlinear Self-Excited Microcantilevers”, IEEE Trans. Nanotechnol., 17:4 (2018), 751–762 | DOI

[21] Zhang, T., Wei, X., Jiang, Z., and Cui, T., “Sensitivity Enhancement of a Resonant Mass Sensor Based on Internal Resonance”, Appl. Phys. Lett., 113:22 (2018), Art. 223505, 5 pp.

[22] Patocka, F., Schneider, M., Dörr, N., Schneidhofer, C., and Schmid, U., “Position-Dependent Mass Responsivity of Silicon MEMS Cantilevers Excited in the Fundamental, Two-Dimensional Roof Tile-Shaped Mode”, J. Micromech. Microeng., 29:4 (2019), Art. 045009, 7 pp. | DOI

[23] Xia, C., Wang, D. F., Ono, T., Itoh, T., and Esashi, M., “Internal Resonance in Coupled Oscillators: Part 1. A Double Amplification Mass Sensing Scheme without Duffing Nonlinearity”, Mech. Syst. Signal Process., 159 (2021), Art. 107886, 12 pp. | DOI

[24] Izv. Akad. Nauk. Mekh. Tverd. Tela, 2014, no. 1, 133–142 (Russian) | DOI

[25] Yan, H., Zhang, W.-M., Jiang, H.-M., Hu, K.-M., Hong, F.-J., Peng, Zh.-K., and Meng, G., “A Measurement Criterion for Accurate Mass Detection Using Vibrating Suspended Microchannel Resonators”, J. Sound Vibration, 403 (2017), 1–20 | DOI

[26] Yan, H., Zhang, W., Jiang, H., Hu, K.-M., Peng, Z. K., and Meng, G., “Relative Vibration of Suspended Particles with Respect to Microchannel Resonators and Its Effect on the Mass Measurement”, J. Vib. Acoust., 141:4 (2019), 041005, 12 pp. | DOI

[27] Bao, Y., Cai, S., Yu, H., Xu, T., Xu, P., and Li, X., “A Resonant Cantilever Based Particle Sensor with Particle-Size Selection Function”, J. Micromech. Microeng., 28:8 (2018), Art. 085019 | DOI

[28] Potekin, R., Kim, S., McFarland, D. M., Bergman, L. A., Cho, H., and Vakakis, A. F., “A Micromechanical Mass Sensing Method Based on Amplitude Tracking within an Ultra-Wide Broadband Resonance”, Nonlinear Dyn., 92:2 (2018), 287–304 | DOI

[29] Xiong, L. and Tang, L., “On the Sensitivity Analysis of Mode-Localized Sensors Based on Weakly Coupled Resonators”, J. Vib. Eng. Technol., 11:3 (2023), 793–807 | DOI

[30] Fang, Z., Theodossiades, S., Ruzziconi, L., and Hajjaj, A. Z., “A Multi-Sensing Scheme Based on Nonlinear Coupled Micromachined Resonators”, Nonlinear Dyn., 111:9 (2023), 8021–8038 | DOI

[31] Rabenimanana, T., Walter, V., Kacem, N., Le Moal, P., and Lardiés, J., “Nonlinear Analytical Model of Two Weakly Coupled MEMS Cantilevers for Mass Sensing Using Electrostatic Actuation”, Proceedings, 2:13 (2018), Art. 1084, 5 pp.

[32] Rabenimanana, T., Walter, V., Kacem, N., Le Moal, P., Bourbon, G., and Lardies, J., “Mass Sensor Using Mode Localization in Two Weakly Coupled MEMS Cantilevers with Different Lengths: Design and Experimental Model Validation”, Sens. Actuator A Phys., 295 (2019), 643–652 | DOI

[33] Endo, D., Yabuno, H., Yamamoto, Y., and Matsumoto, S., “Mass Sensing in a Liquid Environment Using Nonlinear Self-Excited Coupled-Microcantilevers”, J. Microelectromech. Syst., 27:5 (2018), 774–779 | DOI

[34] Lyu, M., Zhao, J., Kacem, N., Liu, P., Tang, B., Xiong, Z., Wang, H., and Huang, Y., “Exploiting Nonlinearity to Enhance the Sensitivity of Mode-Localized Mass Sensor Based on Electrostatically Coupled MEMS Resonators”, Int. J. Nonlin. Mech., 121 (2020), Art. 103455, 11 pp. | DOI

[35] Lyu, M., Zhao, J., Kacem, N., Tang, B., Liu, P., Song, J., Zhong, H., and Huang, Y., “Computational Investigation of High-Order Mode Localization in Electrostatically Coupled Microbeams with Distributed Electrodes for High Sensitivity Mass Sensing”, Mech. Syst. Signal Process., 158 (2021), Art. 107781 | DOI

[36] Grenat, C., Baguet, S., Lamarque, C. H., and Dufour, R., “Mass Sensing by Symmetry Breaking and Localization of Motion in an Array of Electrostatically Coupled Nonlinear MEMS Resonators”, Int. J. Nonlin. Mech., 140 (2022), Art. 103903, 22 pp. | DOI

[37] Zhao, J., Song, J., Lyu, M., Kacem, N., Liu, P., Huang, Y., and Fan, K., “An Asymmetric Mode-Localized Mass Sensor Based on the Electrostatic Coupling of Different Structural Modes with Distributed Electrodes”, Nonlinear Dyn., 108:1 (2022), 61–79 | DOI

[38] Song, J., Lyu, M., Kacem, N., Liu, P., Huang, Y., Fan, K., and Zhao, J., “Exploiting Bifurcation Behaviors in Parametrically Excited Mode-Localized Resonators for Mass Sensing”, J. Appl. Mech., 89:11 (2022), Art. 111006, 11 pp. | DOI

[39] Song, J., Zhao, J., Kacem, N., Lyu, M., Sun, R., and Liu, P., “A Novel Mass Sensor Based on Parametrically Excited Mode-Localized Resonators”, Proc. of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 8. 16th International Conference on Micro- and Nanosystems (MNS) (St. Louis, Mo., USA, Aug 2022), V008T08A008

[40] Enami, W., Yabuno, H., Yamamoto, Y., and Matsumoto, S., “Mode Shift Detection of Coupled Resonators through Parametric Resonance and Its Application to Mass Sensing”, Nonlinear Dyn., 110:1 (2022), 117–129 | DOI

[41] Hong, J., Li, X., Zhou, D., Liu, S., Liu, X., and Wang, D. F., “Localization in Coupled Systems: P. 3. Vibration Characteristics Analysis in a Mode-Localized Four Cantilever Array with and without Mass Perturbation”, Symp. on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP'2018, Rome, Italy, May 2018), 5 pp. | MR

[42] Wang, D. F., Zhou, D., Liu, S., and Hong, J., “Quantitative Identification Scheme for Multiple Analytes with a Mode-Localized Cantilever Array”, IEEE Sens. J., 19:2 (2019), 484–491 | DOI

[43] Wang, D. F., Zhou, D., Liu, S., and Hong, J., “Localized Trio Cantilevers for Identifying Different Mass Perturbations”, Microsyst. Technol., 25:8 (2019), 2993–3003 | DOI

[44] Dick, N. and Krylov, S., “Parametric Resonance and Pattern Selection in an Array of Microcantilevers Interacting through Fringing Electrostatic Fields”, Nonlinear Dyn., 107:2 (2022), 1703–1723 | DOI

[45] Zhao, J., Sun, R., Kacem, N., Lyu, M., and Liu, P., “Multi-Channel Mass Sensing Based on Multiple Internal Resonances in Three Electrostatically Coupled Resonators”, Nonlinear Dyn., 111:20 (2023), 18861–18884 | DOI

[46] Alkaddour, M., Ghommem, M., and Najar, F., “Nonlinear Analysis and Effectiveness of Weakly Coupled Microbeams for Mass Sensing Applications”, Nonlinear Dyn., 104:1 (2021), 383–397 | DOI

[47] Quan, A., Zhang, H., Wang, C., Wang, C., Wang, L., Esteves, R. A., Guan, Y., Li, C., and Kraft, M., “A Self-Sustained Mass Sensor with Physical Closed Loop Based on Thermal-Piezoresistive Coupled Resonators”, IEEE Trans. Electron Devices, 69:10 (2022), 5808–5813 | DOI

[48] Yaqoob, U., Jaber, N., Alcheikh, N., and Younis, M. I., “Selective Multiple Analyte Detection Using Multi-Mode Excitation of a MEMS Resonator”, Sci. Rep., 12:1 (2022), Art. 5297, 14 pp. | DOI

[49] Zhao, W., Khan, F., Alcheikh, N., and Younis, M. I., “High Performance Micro Resonators-Based Sensors Using Multimode Excitation”, IEEE Electron Device Lett., 43:10 (2022), 1732–1735 | DOI

[50] Najar, F., Ghommem, M., Kocer, S., Elhady, A., and Abdel-Rahman, E. M., “Detection Methods for Multi-Modal Inertial Gas Sensors”, Sensors, 22:24 (2022), Art. 9688, 24 pp. | DOI | MR

[51] Cao, D. Q., Liu, D. W., and Wang, Ch. H., “Nonlinear Dynamic Modelling for MEMS Components via the Cosserat Rod Element Approach”, J. Micromech. Microeng., 15:6 (2005), 1334–1343 | DOI

[52] Krysko, A. V., Awrejcewicz, J., Pavlov, S. P., Zhigalov, M. V., and Krysko, V. A., “Chaotic Dynamics of the Size-Dependent Non-Linear Micro-Beam Model”, Commun. Nonlinear Sci. Numer. Simul., 50 (2017), 16–28 | DOI | MR | Zbl

[53] Krysko, V. A., Jr., Awrejcewicz, J., Yakovleva, T. V., Kirichenko, A. V., Szymanowska, O., and Krysko, V. A., “Mathematical Modeling of MEMS Elements Subjected to External Forces, Temperature and Noise, Taking account of Coupling of Temperature and Deformation Fields As Well As a Nonhomogenous Material Structure”, Commun. Nonlinear Sci. Numer. Simul., 72 (2019), 39–58 | DOI | MR | Zbl

[54] Emam, S. and Lacarbonara, W., “Buckling and Postbuckling of Extensible, Shear-Deformable Beams: Some Exact Solutions and New Insights”, Int. J. Nonlin. Mech., 129 (2021), Art. 103667 | DOI

[55] Beck, J. V., Cole, K. D., Haji-Sheikh, A., and Litkouhi, B., Heat Conduction Using Green's Functions, Series in Computational and Physical Processes in Mechanics and Thermal Sciences, Hemisphere, London, 1992, xxviii, 523 pp. | MR

[56] Awrejcewicz, J. and Krysko, V. A., Elastic and Thermoelastic Problems in Nonlinear Dynamics of Structural Members: Applications of the Bubnov – Galerkin and Finite Difference Methods, Sci. Comput., 2nd ed., Springer, Cham, 2020, xx, 602 pp. | MR | Zbl

[57] Awrejcewicz, J., Krysko, A. V., Zhigalov, M. V., and Krysko, V. A., Mathematical Modelling and Numerical Analysis of Size-Dependent Structural Members in Temperature Fields: Regular and Chaotic Dynamics of Micro/Nano Beams, and Cylindrical Panels, Adv. Struct. Mater., 142, Springer, Cham, 2020, xxi, 402 pp.

[58] Awrejcewicz, J., Starosta, R., and Sypniewska-Kamińska, G., Asymptotic Multiple Scale Method in Time Domain-Multi-Degree-of-Freedom Stationary and Nonstationary Dynamics, Chapman Hall/CRC, Boca Raton, Fla., 2022, xiv, 396 pp. | MR

[59] Nayfeh, A. H., Introduction to Perturbation Techniques, Wiley, New York, 1993, 536 pp. | MR

[60] Dhooge, A., Govaerts, W., and Kuznetsov, Yu., “MATCONT: A Matlab Package for Numerical Bifurcation Analysis of ODEs”, ACM Trans. Math. Softw., 29:2 (2003), 141–164 | DOI | MR | Zbl