Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2024_20_2_a2, author = {A. I. Zemlyanukhin and A. V. Bochkarev and N. A. Artamonov}, title = {Physically {Admissible} and {Inadmissible} {Exact} {Localized}}, journal = {Russian journal of nonlinear dynamics}, pages = {219--229}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2024_20_2_a2/} }
TY - JOUR AU - A. I. Zemlyanukhin AU - A. V. Bochkarev AU - N. A. Artamonov TI - Physically Admissible and Inadmissible Exact Localized JO - Russian journal of nonlinear dynamics PY - 2024 SP - 219 EP - 229 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2024_20_2_a2/ LA - en ID - ND_2024_20_2_a2 ER -
A. I. Zemlyanukhin; A. V. Bochkarev; N. A. Artamonov. Physically Admissible and Inadmissible Exact Localized. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 2, pp. 219-229. http://geodesic.mathdoc.fr/item/ND_2024_20_2_a2/
[1] Manevitch, L. I. and Gendelman, O. V., Tractable Models of Solid Mechanics: Formulation, Analysis and Interpretation, Foundations of Engineering Mechanics, Springer, Heidelberg, 2011, xiv, 302 pp. | DOI | MR | Zbl
[2] Andrianov, I. V. and Awrejcewicz, J., Asymptotic Methods for Engineers, 1st ed., CRC, Boca Raton, 2024, 244 pp.
[3] Thompson, J. M. T., “Advances in Shell Buckling: Theory and Experiments”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 25:1 (2015), Art. 1530001, 25 pp. | DOI | MR
[4] Kudryashov, N. A., Methods of Nonlinear Mathematical Physics, Intellect, Moscow, 2010, 368 pp. (Russian)
[5] Conte, R. and Musette, M., The Painlevé Handbook, Springer, Dordrecht, 2008, xxiv, 256 pp. | MR
[6] Polyanin, A. D., Zaitsev, V. F., and Zhurov, A. I., Methods for Solving Nonlinear Equations of Mathematical Physics and Mechanics, Fizmatlit, Moscow, 2005, 256 pp. (Russian)
[7] Bochkarev, A., Zemlyanukhin, A., Erofeev, V., and Ratushny, A., “Analytically Solvable Models and Physically Realizable Solutions to Some Problems in Nonlinear Wave Dynamics of Cylindrical Shells”, Symmetry, 13:11 (2021), Art. 2227, 13 pp. | DOI
[8] Yamaki, N., Elastic Stability of Circular Cylindrical Shells, North-Holland Ser. Appl. Math. Mech., 27, North-Holland, Amsterdam, 1984, xiii, 558 pp. | MR | Zbl
[9] Winkler, E., Die Lehre von der Elastizität und Festigkeit, Dominicus, Prague, 1867, 412 pp.
[10] Biot, M. A., “Bending of an Infinite Beam on an Elastic Foundation”, J. Appl. Mech., 4:1 (1937), A1–A7 | DOI
[11] Filonenko-Borodich, M. M., “Some Approximate Theories of the Elastic Foundation”, Uchen. Zap. Mosk. Gos. Univ., 46 (1940), 3–18 (Russian) | MR
[12] Pasternak, P. L., On a New Method of Analysis of an Elastic Foundation by Means of Two Foundation Constants, Gosstrojizdat, Moscow, 1954 (Russian)
[13] Kerr, A. D., “On the Formal Development of Elastic Foundation Models”, Ing. Arch., 54:6 (1984), 455–464 | DOI | Zbl
[14] Dillard, D. A., Mukherjee, B., Karnal, P., Batra, R. C., and Frechette, J., “A Review of Winkler's Foundation and Its Profound Influence on Adhesion and Soft Matter Applications”, Soft Matter, 14:19 (2018), 3669–3683 | DOI | MR
[15] Zemlyanukhin, A. I., Bochkarev, A. V., Erofeev, V. I., and Ratushny, A. V., “Axisymmetric Longitudinal Waves in a Cylindrical Shell Interacting with a Nonlinear Elastic Medium”, Wave Motion, 114 (2022), Art. 103020 | DOI | MR
[16] Kudryashov, N. A., Sinelshchikov, D. I., and Demina, M. V., “Exact Solutions of the Generalized Bretherton Equation”, Phys. Lett. A, 375:7 (2011), 1074–1079 | DOI | MR | Zbl
[17] Zemlyanukhin, A. I., Bochkarev, A. V., Andrianov, I. V., and Erofeev, V. I., “The Schamel – Ostrovsky Equation in Nonlinear Wave Dynamics of Cylindrical Shells”, J. Sound Vibration, 491 (2021), Art. 115752 | DOI
[18] Lukash, P. A., Fundamentals of Nonlinear Structural Mechanics, Stroyizdat, Moscow, 1978, 204 pp. (Russian)
[19] Zarembo, L. K. and Krasil'nikov, V. A., Introduction to Nonlinear Acoustics, Nauka, Moscow, 1966, 519 pp. (Russian)
[20] Erofeev, V. I. and Leonteva, A. V., “Localized Bending and Longitudinal Waves in Rods Interacting with External Nonlinear Elastic Medium”, J. Phys. Conf. Ser., 1348 (2019), Art. 012004, 9 pp. | DOI
[21] Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, 2021, no. 4, 3–17 (Russian) | DOI | Zbl
[22] Pelinovsky, E. N., Didenkulova (Shurgalina), E. G., Talipova, T. G., Tobish, E., Orlov, Yu. F., and Zen'kovich, A. V., “Korteweg – de Vries Type Equations in Applications”, Trudy NGTU, 4 (2018), 41–47 (Russian) | MR
[23] Volmir, A. S., The Nonlinear Dynamics of Plates and Shells, Foreign Technology Division, Wright-Patterson AFB, Dayton, Ohio, 1974, 543 pp.
[24] Zemlyanukhin, A. I. and Bochkarev, A. V., “Axisymmetric Nonlinear Modulated Waves in a Cylindrical Shell”, Acoust. Phys., 64:4 (2018), 408–414 | DOI
[25] Amabili, M., Nonlinear Mechanics of Shells and Plates in Composite, Soft and Biological Materials, Cambridge Univ. Press, Cambridge, 2018, 549 pp. | MR | Zbl
[26] Amabili, M., Nonlinear Vibrations and Stability of Shells and Plates, Cambridge Univ. Press, Cambridge, 2008, xvi, 374 pp. | MR | Zbl
[27] Donnell, E. H., “A New Theory for the Buckling of Thin Cylinders under Axial Compression and Bending”, Trans. ASME, 56 (1934), 795–806
[28] Amabili, M., “A Comparison of Shell Theories for Large-Amplitude Vibrations of Circular Cylindrical Shells: Lagrangian Approach”, J. Sound Vibration, 264:5 (2003), 1091–1125 | DOI
[29] Okeanologiya, 18:2 (1978), 181–191 (Russian)
[30] Ostrovsky, L., Asymptotic Perturbation Theory of Waves, Imperial College Press, London, 2015, 227 pp. | MR | Zbl
[31] Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana, 56:1 (2020), 20–42 (Russian) | DOI
[32] Grimshaw, R., Stepanyants, Yu., and Alias, A., “Formation of Wave Packets in the Ostrovsky Equation for Both Normal and Anomalous Dispersion”, Proc. A, 472:2185 (2016), Art. 20150416, 20 pp. | MR