Physically Admissible and Inadmissible Exact Localized
Russian journal of nonlinear dynamics, Tome 20 (2024) no. 2, pp. 219-229.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that, when studying nonlinear longitudinal deformation waves in cylindrical shells, it is possible to obtain physically admissible solitary wave solutions using refined shell models. In the article, a physically admissible exact localized solution based on the Flügge – Lurie – Byrne model is constructed. An analysis of the influence of the external nonlinear elastic medium on the exact solutions obtained is carried out. It is established that the use of quadratic and cubic nonlinear deformation laws leads to nonintegrable equations with exact soliton-like solutions. However, the amplitudes of the exact solutions exceed the values of permissible dis- placements corresponding to the maximum points on the curves of the deformation laws of the external medium, which leads to the physical inadmissibility of these solutions.
Keywords: cylindrical shell, solitary wave solution, physically admissible solution, nonlinear deformation law, refined shell model
@article{ND_2024_20_2_a2,
     author = {A. I. Zemlyanukhin and A. V. Bochkarev and N. A. Artamonov},
     title = {Physically {Admissible} and {Inadmissible} {Exact} {Localized}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {219--229},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2024_20_2_a2/}
}
TY  - JOUR
AU  - A. I. Zemlyanukhin
AU  - A. V. Bochkarev
AU  - N. A. Artamonov
TI  - Physically Admissible and Inadmissible Exact Localized
JO  - Russian journal of nonlinear dynamics
PY  - 2024
SP  - 219
EP  - 229
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2024_20_2_a2/
LA  - en
ID  - ND_2024_20_2_a2
ER  - 
%0 Journal Article
%A A. I. Zemlyanukhin
%A A. V. Bochkarev
%A N. A. Artamonov
%T Physically Admissible and Inadmissible Exact Localized
%J Russian journal of nonlinear dynamics
%D 2024
%P 219-229
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2024_20_2_a2/
%G en
%F ND_2024_20_2_a2
A. I. Zemlyanukhin; A. V. Bochkarev; N. A. Artamonov. Physically Admissible and Inadmissible Exact Localized. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 2, pp. 219-229. http://geodesic.mathdoc.fr/item/ND_2024_20_2_a2/

[1] Manevitch, L. I. and Gendelman, O. V., Tractable Models of Solid Mechanics: Formulation, Analysis and Interpretation, Foundations of Engineering Mechanics, Springer, Heidelberg, 2011, xiv, 302 pp. | DOI | MR | Zbl

[2] Andrianov, I. V. and Awrejcewicz, J., Asymptotic Methods for Engineers, 1st ed., CRC, Boca Raton, 2024, 244 pp.

[3] Thompson, J. M. T., “Advances in Shell Buckling: Theory and Experiments”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 25:1 (2015), Art. 1530001, 25 pp. | DOI | MR

[4] Kudryashov, N. A., Methods of Nonlinear Mathematical Physics, Intellect, Moscow, 2010, 368 pp. (Russian)

[5] Conte, R. and Musette, M., The Painlevé Handbook, Springer, Dordrecht, 2008, xxiv, 256 pp. | MR

[6] Polyanin, A. D., Zaitsev, V. F., and Zhurov, A. I., Methods for Solving Nonlinear Equations of Mathematical Physics and Mechanics, Fizmatlit, Moscow, 2005, 256 pp. (Russian)

[7] Bochkarev, A., Zemlyanukhin, A., Erofeev, V., and Ratushny, A., “Analytically Solvable Models and Physically Realizable Solutions to Some Problems in Nonlinear Wave Dynamics of Cylindrical Shells”, Symmetry, 13:11 (2021), Art. 2227, 13 pp. | DOI

[8] Yamaki, N., Elastic Stability of Circular Cylindrical Shells, North-Holland Ser. Appl. Math. Mech., 27, North-Holland, Amsterdam, 1984, xiii, 558 pp. | MR | Zbl

[9] Winkler, E., Die Lehre von der Elastizität und Festigkeit, Dominicus, Prague, 1867, 412 pp.

[10] Biot, M. A., “Bending of an Infinite Beam on an Elastic Foundation”, J. Appl. Mech., 4:1 (1937), A1–A7 | DOI

[11] Filonenko-Borodich, M. M., “Some Approximate Theories of the Elastic Foundation”, Uchen. Zap. Mosk. Gos. Univ., 46 (1940), 3–18 (Russian) | MR

[12] Pasternak, P. L., On a New Method of Analysis of an Elastic Foundation by Means of Two Foundation Constants, Gosstrojizdat, Moscow, 1954 (Russian)

[13] Kerr, A. D., “On the Formal Development of Elastic Foundation Models”, Ing. Arch., 54:6 (1984), 455–464 | DOI | Zbl

[14] Dillard, D. A., Mukherjee, B., Karnal, P., Batra, R. C., and Frechette, J., “A Review of Winkler's Foundation and Its Profound Influence on Adhesion and Soft Matter Applications”, Soft Matter, 14:19 (2018), 3669–3683 | DOI | MR

[15] Zemlyanukhin, A. I., Bochkarev, A. V., Erofeev, V. I., and Ratushny, A. V., “Axisymmetric Longitudinal Waves in a Cylindrical Shell Interacting with a Nonlinear Elastic Medium”, Wave Motion, 114 (2022), Art. 103020 | DOI | MR

[16] Kudryashov, N. A., Sinelshchikov, D. I., and Demina, M. V., “Exact Solutions of the Generalized Bretherton Equation”, Phys. Lett. A, 375:7 (2011), 1074–1079 | DOI | MR | Zbl

[17] Zemlyanukhin, A. I., Bochkarev, A. V., Andrianov, I. V., and Erofeev, V. I., “The Schamel – Ostrovsky Equation in Nonlinear Wave Dynamics of Cylindrical Shells”, J. Sound Vibration, 491 (2021), Art. 115752 | DOI

[18] Lukash, P. A., Fundamentals of Nonlinear Structural Mechanics, Stroyizdat, Moscow, 1978, 204 pp. (Russian)

[19] Zarembo, L. K. and Krasil'nikov, V. A., Introduction to Nonlinear Acoustics, Nauka, Moscow, 1966, 519 pp. (Russian)

[20] Erofeev, V. I. and Leonteva, A. V., “Localized Bending and Longitudinal Waves in Rods Interacting with External Nonlinear Elastic Medium”, J. Phys. Conf. Ser., 1348 (2019), Art. 012004, 9 pp. | DOI

[21] Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, 2021, no. 4, 3–17 (Russian) | DOI | Zbl

[22] Pelinovsky, E. N., Didenkulova (Shurgalina), E. G., Talipova, T. G., Tobish, E., Orlov, Yu. F., and Zen'kovich, A. V., “Korteweg – de Vries Type Equations in Applications”, Trudy NGTU, 4 (2018), 41–47 (Russian) | MR

[23] Volmir, A. S., The Nonlinear Dynamics of Plates and Shells, Foreign Technology Division, Wright-Patterson AFB, Dayton, Ohio, 1974, 543 pp.

[24] Zemlyanukhin, A. I. and Bochkarev, A. V., “Axisymmetric Nonlinear Modulated Waves in a Cylindrical Shell”, Acoust. Phys., 64:4 (2018), 408–414 | DOI

[25] Amabili, M., Nonlinear Mechanics of Shells and Plates in Composite, Soft and Biological Materials, Cambridge Univ. Press, Cambridge, 2018, 549 pp. | MR | Zbl

[26] Amabili, M., Nonlinear Vibrations and Stability of Shells and Plates, Cambridge Univ. Press, Cambridge, 2008, xvi, 374 pp. | MR | Zbl

[27] Donnell, E. H., “A New Theory for the Buckling of Thin Cylinders under Axial Compression and Bending”, Trans. ASME, 56 (1934), 795–806

[28] Amabili, M., “A Comparison of Shell Theories for Large-Amplitude Vibrations of Circular Cylindrical Shells: Lagrangian Approach”, J. Sound Vibration, 264:5 (2003), 1091–1125 | DOI

[29] Okeanologiya, 18:2 (1978), 181–191 (Russian)

[30] Ostrovsky, L., Asymptotic Perturbation Theory of Waves, Imperial College Press, London, 2015, 227 pp. | MR | Zbl

[31] Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana, 56:1 (2020), 20–42 (Russian) | DOI

[32] Grimshaw, R., Stepanyants, Yu., and Alias, A., “Formation of Wave Packets in the Ostrovsky Equation for Both Normal and Anomalous Dispersion”, Proc. A, 472:2185 (2016), Art. 20150416, 20 pp. | MR