On the Orbital Stability of Periodic Motions of a Heavy Rigid Body in the Bobylev – Steklov Case
Russian journal of nonlinear dynamics, Tome 20 (2024) no. 1, pp. 127-140.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of the orbital stability of periodic motions of a heavy rigid body with a fixed point is investigated. The periodic motions are described by a particular solution obtained by D. N. Bobylev and V. A. Steklov and lie on the zero level set of the area integral. The problem of nonlinear orbital stability is studied. It is shown that the domain of possible parameter values is separated into two regions: a region of orbital stability and a region of orbital instability. At the boundary of these regions, the orbital instability of the periodic motions takes place.
Keywords: periodic motions, orbital stability, symplectic map, normal form, resonances
Mots-clés : Bobylev – Steklov case
@article{ND_2024_20_1_a7,
     author = {B. S. Bardin},
     title = {On the {Orbital} {Stability} of {Periodic} {Motions} of a {Heavy} {Rigid} {Body} in the {Bobylev} {\textendash} {Steklov} {Case}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {127--140},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2024_20_1_a7/}
}
TY  - JOUR
AU  - B. S. Bardin
TI  - On the Orbital Stability of Periodic Motions of a Heavy Rigid Body in the Bobylev – Steklov Case
JO  - Russian journal of nonlinear dynamics
PY  - 2024
SP  - 127
EP  - 140
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2024_20_1_a7/
LA  - en
ID  - ND_2024_20_1_a7
ER  - 
%0 Journal Article
%A B. S. Bardin
%T On the Orbital Stability of Periodic Motions of a Heavy Rigid Body in the Bobylev – Steklov Case
%J Russian journal of nonlinear dynamics
%D 2024
%P 127-140
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2024_20_1_a7/
%G en
%F ND_2024_20_1_a7
B. S. Bardin. On the Orbital Stability of Periodic Motions of a Heavy Rigid Body in the Bobylev – Steklov Case. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 1, pp. 127-140. http://geodesic.mathdoc.fr/item/ND_2024_20_1_a7/

[1] Birkhoff, G. D., Dynamical Systems, Amer. Math. Soc. Colloq. Publ., 9, AMS, Providence, R.I., 1966, 305 pp. | MR

[2] Prikl. Mat. Mekh., 66:6 (2002), 929–938 (Russian) | DOI | MR | Zbl

[3] Bardin, B. S., “On a Method of Introducing Local Coordinates in the Problem of the Orbital Stability of Planar Periodic Motions of a Rigid Body”, Russian J. Nonlinear Dyn., 16:4 (2020), 581–594 | MR | Zbl

[4] Izv. Akad. Nauk. Mekh. Tverd. Tela, 38:1 (2003), 3–9 (Russian) | MR

[5] Prikl. Mat. Mekh., 68:2 (2004), 282–293 (Russian) | DOI | MR | Zbl

[6] Bardin, B. S., “On the Orbital Stability of Pendulum-Like Motions of a Rigid Body in the Bobylev – Steklov Case”, Regul. Chaotic Dyn., 15:6 (2010), 702–714 | DOI | MR

[7] Bardin, B. S., Rudenko, T. V., and Savin, A. A., “On the Orbital Stability of Planar Periodic Motions of a Rigid Body in the Bobylev – Steklov Case”, Regul. Cahotic Dyn., 17:6 (2012), 533–546 | DOI | MR | Zbl

[8] Prikl. Mat. Mekh., 77:6 (2013), 806–821 (Russian) | DOI | MR | Zbl

[9] Bardin, B. S. and Savin, A. A., “On the Orbital Stability of Pendulum-Like Oscillations and Rotations of a Symmetric Rigid Body with a Fixed Point”, Regul. Chaotic Dyn., 17:3–4 (2012), 243–257 | DOI | MR | Zbl

[10] Bardin, B. S. and Chekina, E. A., “On the Orbital Stability of Pendulum-Like Oscillations of a Heavy Rigid Body with a Fixed Point in the Bobylev – Steklov Case”, Russian J. Nonlinear Dyn., 17:4 (2021), 453–464 | MR | Zbl

[11] Prikl. Mat. Mekh., 67:4 (2003), 556–571 (Russian) | DOI | MR | Zbl

[12] Prikl. Mat. Mekh., 82:5 (2018), 531–546 (Russian) | DOI | Zbl

[13] Izv. Akad. Nauk. Mekh. Tverd. Tela, 2005, no. 1, 20–33 (Russian) | MR

[14] Giacaglia, G. E. O., Perturbation Methods in Non-Linear Systems, Appl. Math. Sci., 8, Springer, New York, 1972, 369 pp. | DOI | MR | Zbl

[15] Markeev, A. P., Libration Points in Celestial Mechanics and Space Dynamics, Nauka, Moscow, 1978, 312 pp. (Russian)

[16] Siegel, C. L. and Moser, J. K., Lectures on Celestial Mechanics, Grundlehren Math. Wiss., 187, Springer, New York, 1971, 290 pp. | DOI | MR | Zbl

[17] Uspekhi Mat. Nauk, 18:6(114) (1963), 91–192 (Russian) | DOI | MR | Zbl

[18] Irtegov, V. D., “The Stability of the Pendulum-Like Oscillations of a Kovalevskaya Gyroscope”, Tr. Kazan. Aviats. Inst., 97 (1968), 38–40 (Russian)

[19] Prikl. Mat. Mekh., 53:6 (1989), 873–879 | DOI | MR | Zbl

[20] Prikl. Mat. Mekh., 70:2 (2006), 221–224 (Russian) | DOI | MR | Zbl

[21] Uspekhi Mat. Nauk, 65:2 (2010), 71–132 (Russian) | DOI | DOI | MR | Zbl

[22] Bardin, B. S., “On the Method of Introduction of Local Variables in a Neighborhood of Periodic Solution of a Hamiltonian System with Two Degrees of Freedom”, Regul. Chaotic Dyn., 28:6 (2023), 878–887 | DOI | MR | Zbl

[23] Yehia, H. M., Hassan, S. Z., and Shaheen, M. E., “On the Orbital Stability of the Motion of a Rigid Body in the Case of Bobylev – Steklov”, Nonlinear Dynam., 80:3 (2015), 1173–1185 | DOI | MR

[24] Gorr, G. V., “On Asymptotic Motions of a Heavy Rigid Body in the Bobylev – Steklov Case”, Nelin. Dinam., 12:4 (2016), 651–661 (Russian) | DOI | MR

[25] Bobylev, D. N., “On a Particular Solution of the Differential Equations of a Heavy Rigid Body Rotation around of a Fixed Point”, Tr. Otdel. Fiz. Nauk Obsch. Lyubit. Estestvozn., 8:2 (1896), 21–25 (Russian)

[26] Steklov, V. A., “A Certain Case of Motion of Heavy Rigid Body Having Fixed Point”, Tr. Otdel. Fiz. Nauk Ob-va Lubit. Estestvozn., 8:1 (1896), 19–21 (Russian)

[27] Borisov, A. V. and Mamaev, I. S., Rigid Body Dynamics, De Gruyter Stud. Math. Phys., 52, De Gruyter, Berlin, 2018, vii, 526 pp. | MR

[28] Malkin, I. G., Theory of Stability of Motion, U.S. Atomic Energy Commission, Washington, D.C., 1952, 456 pp.

[29] Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 2004, no. 6, 3–12 (Russian)

[30] Bardin, B. S. and Lanchares, V., “On the Stability of Periodic Hamiltonian Systems with One Degree of Freedom in the Case of Degeneracy,”, Regul. Chaotic Dyn., 20:6 (2015), 627–648 | DOI | MR | Zbl