On the Orbital Stability of Periodic Motions of a Heavy Rigid Body in the Bobylev – Steklov Case
Russian journal of nonlinear dynamics, Tome 20 (2024) no. 1, pp. 127-140
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of the orbital stability of periodic motions of a heavy rigid body with a fixed
point is investigated. The periodic motions are described by a particular solution obtained by
D. N. Bobylev and V. A. Steklov and lie on the zero level set of the area integral. The problem of
nonlinear orbital stability is studied. It is shown that the domain of possible parameter values
is separated into two regions: a region of orbital stability and a region of orbital instability. At
the boundary of these regions, the orbital instability of the periodic motions takes place.
Keywords:
periodic motions, orbital stability, symplectic map, normal form, resonances
Mots-clés : Bobylev – Steklov case
Mots-clés : Bobylev – Steklov case
@article{ND_2024_20_1_a7,
author = {B. S. Bardin},
title = {On the {Orbital} {Stability} of {Periodic} {Motions} of a {Heavy} {Rigid} {Body} in the {Bobylev} {\textendash} {Steklov} {Case}},
journal = {Russian journal of nonlinear dynamics},
pages = {127--140},
publisher = {mathdoc},
volume = {20},
number = {1},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ND_2024_20_1_a7/}
}
TY - JOUR AU - B. S. Bardin TI - On the Orbital Stability of Periodic Motions of a Heavy Rigid Body in the Bobylev – Steklov Case JO - Russian journal of nonlinear dynamics PY - 2024 SP - 127 EP - 140 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2024_20_1_a7/ LA - en ID - ND_2024_20_1_a7 ER -
B. S. Bardin. On the Orbital Stability of Periodic Motions of a Heavy Rigid Body in the Bobylev – Steklov Case. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 1, pp. 127-140. http://geodesic.mathdoc.fr/item/ND_2024_20_1_a7/