On the Orbital Stability of Periodic Motions of a Heavy Rigid Body in the Bobylev – Steklov Case
Russian journal of nonlinear dynamics, Tome 20 (2024) no. 1, pp. 127-140

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of the orbital stability of periodic motions of a heavy rigid body with a fixed point is investigated. The periodic motions are described by a particular solution obtained by D. N. Bobylev and V. A. Steklov and lie on the zero level set of the area integral. The problem of nonlinear orbital stability is studied. It is shown that the domain of possible parameter values is separated into two regions: a region of orbital stability and a region of orbital instability. At the boundary of these regions, the orbital instability of the periodic motions takes place.
Keywords: periodic motions, orbital stability, symplectic map, normal form, resonances
Mots-clés : Bobylev – Steklov case
@article{ND_2024_20_1_a7,
     author = {B. S. Bardin},
     title = {On the {Orbital} {Stability} of {Periodic} {Motions} of a {Heavy} {Rigid} {Body} in the {Bobylev} {\textendash} {Steklov} {Case}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {127--140},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2024_20_1_a7/}
}
TY  - JOUR
AU  - B. S. Bardin
TI  - On the Orbital Stability of Periodic Motions of a Heavy Rigid Body in the Bobylev – Steklov Case
JO  - Russian journal of nonlinear dynamics
PY  - 2024
SP  - 127
EP  - 140
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2024_20_1_a7/
LA  - en
ID  - ND_2024_20_1_a7
ER  - 
%0 Journal Article
%A B. S. Bardin
%T On the Orbital Stability of Periodic Motions of a Heavy Rigid Body in the Bobylev – Steklov Case
%J Russian journal of nonlinear dynamics
%D 2024
%P 127-140
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2024_20_1_a7/
%G en
%F ND_2024_20_1_a7
B. S. Bardin. On the Orbital Stability of Periodic Motions of a Heavy Rigid Body in the Bobylev – Steklov Case. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 1, pp. 127-140. http://geodesic.mathdoc.fr/item/ND_2024_20_1_a7/