Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2024_20_1_a7, author = {B. S. Bardin}, title = {On the {Orbital} {Stability} of {Periodic} {Motions} of a {Heavy} {Rigid} {Body} in the {Bobylev} {\textendash} {Steklov} {Case}}, journal = {Russian journal of nonlinear dynamics}, pages = {127--140}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2024_20_1_a7/} }
TY - JOUR AU - B. S. Bardin TI - On the Orbital Stability of Periodic Motions of a Heavy Rigid Body in the Bobylev – Steklov Case JO - Russian journal of nonlinear dynamics PY - 2024 SP - 127 EP - 140 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2024_20_1_a7/ LA - en ID - ND_2024_20_1_a7 ER -
B. S. Bardin. On the Orbital Stability of Periodic Motions of a Heavy Rigid Body in the Bobylev – Steklov Case. Russian journal of nonlinear dynamics, Tome 20 (2024) no. 1, pp. 127-140. http://geodesic.mathdoc.fr/item/ND_2024_20_1_a7/
[1] Birkhoff, G. D., Dynamical Systems, Amer. Math. Soc. Colloq. Publ., 9, AMS, Providence, R.I., 1966, 305 pp. | MR
[2] Prikl. Mat. Mekh., 66:6 (2002), 929–938 (Russian) | DOI | MR | Zbl
[3] Bardin, B. S., “On a Method of Introducing Local Coordinates in the Problem of the Orbital Stability of Planar Periodic Motions of a Rigid Body”, Russian J. Nonlinear Dyn., 16:4 (2020), 581–594 | MR | Zbl
[4] Izv. Akad. Nauk. Mekh. Tverd. Tela, 38:1 (2003), 3–9 (Russian) | MR
[5] Prikl. Mat. Mekh., 68:2 (2004), 282–293 (Russian) | DOI | MR | Zbl
[6] Bardin, B. S., “On the Orbital Stability of Pendulum-Like Motions of a Rigid Body in the Bobylev – Steklov Case”, Regul. Chaotic Dyn., 15:6 (2010), 702–714 | DOI | MR
[7] Bardin, B. S., Rudenko, T. V., and Savin, A. A., “On the Orbital Stability of Planar Periodic Motions of a Rigid Body in the Bobylev – Steklov Case”, Regul. Cahotic Dyn., 17:6 (2012), 533–546 | DOI | MR | Zbl
[8] Prikl. Mat. Mekh., 77:6 (2013), 806–821 (Russian) | DOI | MR | Zbl
[9] Bardin, B. S. and Savin, A. A., “On the Orbital Stability of Pendulum-Like Oscillations and Rotations of a Symmetric Rigid Body with a Fixed Point”, Regul. Chaotic Dyn., 17:3–4 (2012), 243–257 | DOI | MR | Zbl
[10] Bardin, B. S. and Chekina, E. A., “On the Orbital Stability of Pendulum-Like Oscillations of a Heavy Rigid Body with a Fixed Point in the Bobylev – Steklov Case”, Russian J. Nonlinear Dyn., 17:4 (2021), 453–464 | MR | Zbl
[11] Prikl. Mat. Mekh., 67:4 (2003), 556–571 (Russian) | DOI | MR | Zbl
[12] Prikl. Mat. Mekh., 82:5 (2018), 531–546 (Russian) | DOI | Zbl
[13] Izv. Akad. Nauk. Mekh. Tverd. Tela, 2005, no. 1, 20–33 (Russian) | MR
[14] Giacaglia, G. E. O., Perturbation Methods in Non-Linear Systems, Appl. Math. Sci., 8, Springer, New York, 1972, 369 pp. | DOI | MR | Zbl
[15] Markeev, A. P., Libration Points in Celestial Mechanics and Space Dynamics, Nauka, Moscow, 1978, 312 pp. (Russian)
[16] Siegel, C. L. and Moser, J. K., Lectures on Celestial Mechanics, Grundlehren Math. Wiss., 187, Springer, New York, 1971, 290 pp. | DOI | MR | Zbl
[17] Uspekhi Mat. Nauk, 18:6(114) (1963), 91–192 (Russian) | DOI | MR | Zbl
[18] Irtegov, V. D., “The Stability of the Pendulum-Like Oscillations of a Kovalevskaya Gyroscope”, Tr. Kazan. Aviats. Inst., 97 (1968), 38–40 (Russian)
[19] Prikl. Mat. Mekh., 53:6 (1989), 873–879 | DOI | MR | Zbl
[20] Prikl. Mat. Mekh., 70:2 (2006), 221–224 (Russian) | DOI | MR | Zbl
[21] Uspekhi Mat. Nauk, 65:2 (2010), 71–132 (Russian) | DOI | DOI | MR | Zbl
[22] Bardin, B. S., “On the Method of Introduction of Local Variables in a Neighborhood of Periodic Solution of a Hamiltonian System with Two Degrees of Freedom”, Regul. Chaotic Dyn., 28:6 (2023), 878–887 | DOI | MR | Zbl
[23] Yehia, H. M., Hassan, S. Z., and Shaheen, M. E., “On the Orbital Stability of the Motion of a Rigid Body in the Case of Bobylev – Steklov”, Nonlinear Dynam., 80:3 (2015), 1173–1185 | DOI | MR
[24] Gorr, G. V., “On Asymptotic Motions of a Heavy Rigid Body in the Bobylev – Steklov Case”, Nelin. Dinam., 12:4 (2016), 651–661 (Russian) | DOI | MR
[25] Bobylev, D. N., “On a Particular Solution of the Differential Equations of a Heavy Rigid Body Rotation around of a Fixed Point”, Tr. Otdel. Fiz. Nauk Obsch. Lyubit. Estestvozn., 8:2 (1896), 21–25 (Russian)
[26] Steklov, V. A., “A Certain Case of Motion of Heavy Rigid Body Having Fixed Point”, Tr. Otdel. Fiz. Nauk Ob-va Lubit. Estestvozn., 8:1 (1896), 19–21 (Russian)
[27] Borisov, A. V. and Mamaev, I. S., Rigid Body Dynamics, De Gruyter Stud. Math. Phys., 52, De Gruyter, Berlin, 2018, vii, 526 pp. | MR
[28] Malkin, I. G., Theory of Stability of Motion, U.S. Atomic Energy Commission, Washington, D.C., 1952, 456 pp.
[29] Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 2004, no. 6, 3–12 (Russian)
[30] Bardin, B. S. and Lanchares, V., “On the Stability of Periodic Hamiltonian Systems with One Degree of Freedom in the Case of Degeneracy,”, Regul. Chaotic Dyn., 20:6 (2015), 627–648 | DOI | MR | Zbl